Articoli correlati a Handbook of Markov Decision Processes: Methods and...

Handbook of Markov Decision Processes: Methods and Applications: 40 - Rilegato

 
9780792374596: Handbook of Markov Decision Processes: Methods and Applications: 40

Sinossi

Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re­ spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap­ ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas­ tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a "good" control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1. Introduction; E.A. Feinberg, A. Shwartz. Part I: Finite State and Action Models. 2. Finite State and Action MDPs; L. Kallenberg. 3. Bias Optimality; M.E. Lewis, M.L. Puterman. 4. Singular Perturbations of Markov Chains and Decision Processes; K.E. Avrachenkov, et al. Part II: Infinite State Models. 5. Average Reward Optimization Theory for Denumerable State Spaces; L.I. Sennott. 6. Total Reward Criteria; E.A. Feinberg. 7. Mixed Criteria; E.A. Feinberg, A. Shwartz. 8. Blackwell Optimality; A. Hordijk, A.A. Yushkevich. 9. The Poisson Equation for Countable Markov Chains: Probabilistic Methods and Interpretations; A.M. Makowski, A. Shwartz. 10. Stability, Performance Evaluation, and Optimization; S.P. Meyn. 11. Convex Analytic Methods in Markov Decision Processes; V.S. Borkar. 12. The Linear Programming Approach; O. Hernández-Lerma, J.B. Lasserre. 13. Invariant Gambling Problems and Markov Decision Processes; L.E. Dubins, et al. Part III: Applications. 14. Neuro-Dynamic Programming: Overview and Recent Trends; B. Van Roy. 15. Markov Decision Processes in Finance and Dynamic Options; M. Schäl. 16. Applications of Markov Decision Processes in Communication Networks; E. Altman. 17. Water Reservoir Applications of Markov Decision Processes; B.F. Lamond, A. Boukhtouta. Index.

Product Description

Book by None

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781461352488: Handbook of Markov Decision Processes: Methods and Applications: 40

Edizione in evidenza

ISBN 10:  1461352487 ISBN 13:  9781461352488
Casa editrice: Springer, 2012
Brossura

Risultati della ricerca per Handbook of Markov Decision Processes: Methods and...

Immagini fornite dal venditore

Feinberg, Eugene A.|Shwartz, Adam
Editore: Springer US, 2001
ISBN 10: 0792374592 ISBN 13: 9780792374596
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Codice articolo 5970178

Contatta il venditore

Compra nuovo

EUR 294,19
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2001
ISBN 10: 0792374592 ISBN 13: 9780792374596
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9780792374596_new

Contatta il venditore

Compra nuovo

EUR 353,08
Convertire valuta
Spese di spedizione: EUR 10,44
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Adam Shwartz
Editore: Springer US Sep 2001, 2001
ISBN 10: 0792374592 ISBN 13: 9780792374596
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a 'good' control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation. 578 pp. Englisch. Codice articolo 9780792374596

Contatta il venditore

Compra nuovo

EUR 353,09
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Adam Shwartz
ISBN 10: 0792374592 ISBN 13: 9780792374596
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a 'good' control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 578 pp. Englisch. Codice articolo 9780792374596

Contatta il venditore

Compra nuovo

EUR 353,09
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Adam Shwartz
Editore: Springer US, Springer US, 2001
ISBN 10: 0792374592 ISBN 13: 9780792374596
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Eugene A. Feinberg Adam Shwartz This volume deals with the theory of Markov Decision Processes (MDPs) and their applications. Each chapter was written by a leading expert in the re spective area. The papers cover major research areas and methodologies, and discuss open questions and future research directions. The papers can be read independently, with the basic notation and concepts ofSection 1.2. Most chap ters should be accessible by graduate or advanced undergraduate students in fields of operations research, electrical engineering, and computer science. 1.1 AN OVERVIEW OF MARKOV DECISION PROCESSES The theory of Markov Decision Processes-also known under several other names including sequential stochastic optimization, discrete-time stochastic control, and stochastic dynamic programming-studiessequential optimization ofdiscrete time stochastic systems. The basic object is a discrete-time stochas tic system whose transition mechanism can be controlled over time. Each control policy defines the stochastic process and values of objective functions associated with this process. The goal is to select a 'good' control policy. In real life, decisions that humans and computers make on all levels usually have two types ofimpacts: (i) they cost orsavetime, money, or other resources, or they bring revenues, as well as (ii) they have an impact on the future, by influencing the dynamics. In many situations, decisions with the largest immediate profit may not be good in view offuture events. MDPs model this paradigm and provide results on the structure and existence of good policies and on methods for their calculation. Codice articolo 9780792374596

Contatta il venditore

Compra nuovo

EUR 366,41
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello