As we continue to build faster and fast. er computers, their performance is be coming increasingly dependent on the memory hierarchy. Both the clock speed of the machine and its throughput per clock depend heavily on the memory hierarchy. The time to complet. e a cache acce88 is oft. en the factor that det. er mines the cycle time. The effectiveness of the hierarchy in keeping the average cost of a reference down has a major impact on how close the sustained per formance is to the peak performance. Small changes in the performance of the memory hierarchy cause large changes in overall system performance. The strong growth of ruse machines, whose performance is more tightly coupled to the memory hierarchy, has created increasing demand for high performance memory systems. This trend is likely to accelerate: the improvements in main memory performance will be small compared to the improvements in processor performance. This difference will lead to an increasing gap between prOCe880r cycle time and main memory acce. time. This gap must be closed by improving the memory hierarchy. Computer architects have attacked this gap by designing machines with cache sizes an order of magnitude larger than those appearing five years ago. Microproce880r-based RISe systems now have caches that rival the size of those in mainframes and supercomputers.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1 Introduction.- 1.1 Overview of Cache Design.- 1.1.1 Cache Parameters.- 1.1.2 Cache Performance Evaluation Methodology.- 1.2 Review of Past Work.- 1.3 Then, Why This Research?.- 1.3.1 Accurately Characterizing Large Cache Performance.- 1.3.2 Obtaining Trace Data for Cache Analysis.- 1.3.3 Developing Efficient and Accurate Cache Analysis Methods.- 1.4 Contributions.- 1.5 Organization.- 2 Obtaining Accurate Trace Data.- 2.1 Current Tracing Techniques.- 2.2 Tracing Using Microcode.- 2.3 An Experimental Implementation.- 2.3.1 Storage of Trace Data.- 2.3.2 Recording Memory References.- 2.3.3 Tracing Control.- 2.4 Trace Description.- 2.5 Applications in Performance Evaluation.- 2.6 Extensions and Summary.- 3 Cache Analyses Techniques — An Analytical Cache Model.- 3.1 Motivation and Overview.- 3.1.1 The Case for the Analytical Cache Model.- 3.1.2 Overview of the Model.- 3.2 A Basic Cache Model.- 3.2.1 Start-Up Effects.- 3.2.2 Non-Stationary Effects.- 3.2.3 Intrinsic Interference.- 3.3 A Comprehensive Cache Model.- 3.3.1 Set Size.- 3.3.2 Modeling Spatial Locality and the Effect of Block Size.- 3.3.3 Multiprogramming.- 3.4 Model Validation and Applications.- 3.5 Summary.- 4 Transient Cache Analysis — Trace Sampling and Trace Stitching.- 4.1 Introduction.- 4.2 Transient Behavior Analysis and Trace Sampling.- 4.2.1 Definitions.- 4.2.2 Analysis of Start-up Effects in Single Process Traces.- 4.2.3 Start-up Effects in Multiprocess Traces.- 4.3 Obtaining Longer Samples Using Trace Stitching.- 4.4 Trace Compaction — Cache Filtering with Blocking.- 4.4.1 Cache Filter.- 4.4.2 Block Filter.- 4.4.3 Implementation of the Cache and Block Filters.- 4.4.4 Miss Rate Estimation.- 4.4.5 Compaction Results.- 5 Cache Performance Analysis for System References.- 5.1 Motivation.- 5.2 Analysis of the Miss Rate Components due to System References.- 5.3 Analysis of System Miss Rate.- 5.4 Associativity.- 5.5 Block Size.- 5.6 Evaluation of Split Caches.- 6 Impact of Multiprogramming on Cache Performance.- 6.1 Relative Performance of Multiprogramming Cache Techniques.- 6.2 More on Warm Start versus Cold Start.- 6.3 Impact of Shared System Code on Multitasking Cache Performance.- 6.4 Process Switch Statistics and Their Effects on Cache ModeUng.- 6.5 Associativity.- 6.6 Block Size.- 6.7 Improving the Multiprogramming Performance of Caches.- 6.7.1 Hashing.- 6.7.2 A Hash-Rehash Cache.- 6.7.3 Split Caches.- 7 Multiprocessor Cache Analysis.- 7.1 Tracing Multiprocessors.- 7.2 Characteristics of Traces.- 7.3 Analysis.- 7.3.1 General Methodology.- 7.3.2 Multiprocess Interference in Large Virtual and Physical Caches.- 7.3.3 Analysis of Interference Between Multiple Processors.- 7.3.4 Blocks Containing Semaphores.- 8 Conclusions and Suggestions for Future Work.- 8.1 Concluding Remarks.- 8.2 Suggestions for Future Work.- Appendices.- B.1 On the Stability of the Collision Rate.- B.2 Estimating Variations in the Collision Rate.- C Inter-Run Intervals and Spatial Locality.- D Summary of Benchmark Characteristics.- E Features of ATUM-2.- E.1 Distributing Trace Control to All Processors.- E.2 Provision of Atomic Accesses to Trace Memory.- E.3 Instruction Stream Compaction Using a Cache Simulated in Microcode.- E.4 Microcode Patch Space Conservation.
Book by Agarwal
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 8,29 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
Hardcover. Condizione: Very Good. No Jacket. Former library book; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 1.3. Codice articolo G0792390059I4N10
Quantità: 1 disponibili
Da: SatelliteBooks, Burlington, VT, U.S.A.
Hardcover. Condizione: As New. Hardcover. Tight binding. Clear text. Free of any markings and no writings inside. For any additional information or pictures, please inquire. Codice articolo 210605008
Quantità: 1 disponibili
Da: Jenson Books Inc, Logan, UT, U.S.A.
hardcover. Condizione: Very Good. A clean, cared for item that is unmarked and shows limited shelf wear. Codice articolo 4BQWN8004ETM
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Codice articolo 458443244
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 597. Codice articolo C9780792390053
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 220. Codice articolo 263051334
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 220 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 5845145
Quantità: 4 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190185574
Quantità: Più di 20 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 220. Codice articolo 183051340
Quantità: 4 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Neuware - As we continue to build faster and fast. er computers, their performance is be coming increasingly dependent on the memory hierarchy. Both the clock speed of the machine and its throughput per clock depend heavily on the memory hierarchy. The time to complet. e a cache acce88 is oft. en the factor that det. er mines the cycle time. The effectiveness of the hierarchy in keeping the average cost of a reference down has a major impact on how close the sustained per formance is to the peak performance. Small changes in the performance of the memory hierarchy cause large changes in overall system performance. The strong growth of ruse machines, whose performance is more tightly coupled to the memory hierarchy, has created increasing demand for high performance memory systems. This trend is likely to accelerate: the improvements in main memory performance will be small compared to the improvements in processor performance. This difference will lead to an increasing gap between prOCe880r cycle time and main memory acce. time. This gap must be closed by improving the memory hierarchy. Computer architects have attacked this gap by designing machines with cache sizes an order of magnitude larger than those appearing five years ago. Microproce880r-based RISe systems now have caches that rival the size of those in mainframes and supercomputers. Codice articolo 9780792390053
Quantità: 2 disponibili