Rapid advances in neural sciences and VLSI design technologies have provided an excellent means to boost the computational capability and efficiency of data and signal processing tasks by several orders of magnitude. With massively parallel processing capabilities, artificial neural networks can be used to solve many engineering and scientific problems. Due to the optimized data communication structure for artificial intelligence applications, a neurocomputer is considered as the most promising sixth-generation computing machine. Typical applica tions of artificial neural networks include associative memory, pattern classification, early vision processing, speech recognition, image data compression, and intelligent robot control. VLSI neural circuits play an important role in exploring and exploiting the rich properties of artificial neural networks by using pro grammable synapses and gain-adjustable neurons. Basic building blocks of the analog VLSI neural networks consist of operational amplifiers as electronic neurons and synthesized resistors as electronic synapses. The synapse weight information can be stored in the dynamically refreshed capacitors for medium-term storage or in the floating-gate of an EEPROM cell for long-term storage. The feedback path in the amplifier can continuously change the output neuron operation from the unity-gain configuration to a high-gain configuration. The adjustability of the vol tage gain in the output neurons allows the implementation of hardware annealing in analog VLSI neural chips to find optimal solutions very efficiently. Both supervised learning and unsupervised learning can be implemented by using the programmable neural chips.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
1. Introduction.- 1.1 Overview of Neural Architectures.- 1.2 VLSI Neural Network Design Methodology.- 2. VLSI Hopfield Networks.- 2.1 Circuit Dynamics of Hopfield Networks.- 2.2 Existence of Local Minima.- 2.3 Elimination of Local Minima.- 2.4 Neural-Based A/D Converter Without Local Minima.- 2.4.1 The Step Function Approach.- 2.4.2 The Correction Logic Approach.- 2.5 Traveling Salesman Problem.- 2.5.1 Competitive-Hopfield Network Approach.- 2.5.2 Search for Optimal Solution.- 3. Hardware Annealing Theory.- 3.1 Simulated Annealing in Software Computation.- 3.2 Hardware Annealing.- 3.2.1 Starting Voltage Gain of the Cooling Schedule.- 3.2.2 Final Voltage Gain of the Cooling Schedule.- 3.3 Application to the Neural-Based A/D Converter.- 3.3.1 Neuron Gain Requirement.- 3.3.2 Relaxed Gain Requirement Using Modified Synapse Weightings.- 4. Programmable Synapses and Gain-Adjustable Neurons.- 4.1 Compact and Programmable Neural Chips.- 4.2 Medium-Term and Long-Term Storage of Synapse Weight.- 4.2.1 DRAM-Style Weight Storage.- 4.2.2 EEPROM-Style Weight Storage.- 5. System Integration for VLSI Neurocomputing.- 5.1 System Module Using Programmable Neural Chip.- 5.2 Application Examples.- 5.2.1 Hopfield Neural-Based A/D Converter.- 5.2.2 Modified Hopfield Network for Image Restoration.- 6. Alternative VLSI Neural Chips.- 6.1 Neural Sensory Chips.- 6.2 Various Analog Neural Chips.- 6.2.1 Analog Neurons.- 6.2.2 Synapses with Fixed Weights.- 6.2.3 Programmable Synapses.- 6.3 Various Digital Neural Chips.- 7. Conclusions and Future Work.- Appendixes.
Book by Lee Bank W Sheu Bing
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,90 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 10,29 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Codice articolo 3023745/202
Quantità: 1 disponibili
Da: Ammareal, Morangis, Francia
Hardcover. Condizione: Bon. Ancien livre de bibliothèque. Légères traces d'usure sur la couverture. Edition 1991. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Slight signs of wear on the cover. Edition 1991. Ammareal gives back up to 15% of this item's net price to charity organizations. Codice articolo D-706-858
Quantità: 1 disponibili
Da: Bookman Orange, Orange, CA, U.S.A.
hardcover. Condizione: Very Good. Clean crisp copy with no markings. Codice articolo 1284618
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792391326_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Rapid advances in neural sciences and VLSI design technologies have provided an excellent means to boost the computational capability and efficiency of data and signal processing tasks by several orders of magnitude. With massively parallel processing capab. Codice articolo 458443349
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 570. Codice articolo C9780792391326
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 260. Codice articolo 263079523
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 260 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 5849788
Quantità: 4 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190185664
Quantità: Più di 20 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 260. Codice articolo 183079529
Quantità: 4 disponibili