The need for automatic speech recognition systems to be robust with respect to changes in their acoustical environment has become more widely appreciated in recent years, as more systems are finding their way into practical applications. Although the issue of environmental robustness has received only a small fraction of the attention devoted to speaker independence, even speech recognition systems that are designed to be speaker independent frequently perform very poorly when they are tested using a different type of microphone or acoustical environment from the one with which they were trained. The use of microphones other than a "close talking" headset also tends to severely degrade speech recognition -performance. Even in relatively quiet office environments, speech is degraded by additive noise from fans, slamming doors, and other conversations, as well as by the effects of unknown linear filtering arising reverberation from surface reflections in a room, or spectral shaping by microphones or the vocal tracts of individual speakers. Speech-recognition systems designed for long-distance telephone lines, or applications deployed in more adverse acoustical environments such as motor vehicles, factory floors, oroutdoors demand far greaterdegrees ofenvironmental robustness. There are several different ways of building acoustical robustness into speech recognition systems. Arrays of microphones can be used to develop a directionally-sensitive system that resists intelference from competing talkers and other noise sources that are spatially separated from the source of the desired speech signal.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
List of Figures. List of Tables. Foreword. 1. Introduction. 2. Experimental Procedure. 3. Frequency Domain Processing. 4. The SDCN Algorithm. 5. The CDCN Algorithm. 6. Other Algorithms. 7. Frequency Normalization. 8. Summary of Results. 9. Conclusions. Appendix I: Glossary. Appendix II: Signal Processing in Sphinx. Appendix III: The Bilinear Transform. Appendix IV: Spectral Estimation Issues. Appendix V: MMSE Estimation in the CDCN Algorithm. Appendix VI: Maximum Likelihood via the EM Algorithm. Appendix VII: Estimation of Noise and Spectral Tilt. Appendix VIII: Vocabulary and Pronunciation Dictionary. References. Index.
Book by Acero Alex
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 28,82 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The need for automatic speech recognition systems to be robust with respect to changes in their acoustical environment has become more widely appreciated in recent years, as more systems are finding their way into practical applications. Although the issue . Codice articolo 5971380
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The need for automatic speech recognition systems to be robust with respect to changes in their acoustical environment has become more widely appreciated in recent years, as more systems are finding their way into practical applications. Although the issue of environmental robustness has received only a small fraction of the attention devoted to speaker independence, even speech recognition systems that are designed to be speaker independent frequently perform very poorly when they are tested using a different type of microphone or acoustical environment from the one with which they were trained. The use of microphones other than a 'close talking' headset also tends to severely degrade speech recognition -performance. Even in relatively quiet office environments, speech is degraded by additive noise from fans, slamming doors, and other conversations, as well as by the effects of unknown linear filtering arising reverberation from surface reflections in a room, or spectral shaping by microphones or the vocal tracts of individual speakers. Speech-recognition systems designed for long-distance telephone lines, or applications deployed in more adverse acoustical environments such as motor vehicles, factory floors, oroutdoors demand far greaterdegrees ofenvironmental robustness. There are several different ways of building acoustical robustness into speech recognition systems. Arrays of microphones can be used to develop a directionally-sensitive system that resists intelference from competing talkers and other noise sources that are spatially separated from the source of the desired speech signal. 212 pp. Englisch. Codice articolo 9780792392842
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -The need for automatic speech recognition systems to be robust with respect to changes in their acoustical environment has become more widely appreciated in recent years, as more systems are finding their way into practical applications. Although the issue of environmental robustness has received only a small fraction of the attention devoted to speaker independence, even speech recognition systems that are designed to be speaker independent frequently perform very poorly when they are tested using a different type of microphone or acoustical environment from the one with which they were trained. The use of microphones other than a 'close talking' headset also tends to severely degrade speech recognition -performance. Even in relatively quiet office environments, speech is degraded by additive noise from fans, slamming doors, and other conversations, as well as by the effects of unknown linear filtering arising reverberation from surface reflections in a room, or spectral shaping by microphones or the vocal tracts of individual speakers. Speech-recognition systems designed for long-distance telephone lines, or applications deployed in more adverse acoustical environments such as motor vehicles, factory floors, oroutdoors demand far greaterdegrees ofenvironmental robustness. There are several different ways of building acoustical robustness into speech recognition systems. Arrays of microphones can be used to develop a directionally-sensitive system that resists intelference from competing talkers and other noise sources that are spatially separated from the source of the desired speech signal.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 212 pp. Englisch. Codice articolo 9780792392842
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792392842_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The need for automatic speech recognition systems to be robust with respect to changes in their acoustical environment has become more widely appreciated in recent years, as more systems are finding their way into practical applications. Although the issue of environmental robustness has received only a small fraction of the attention devoted to speaker independence, even speech recognition systems that are designed to be speaker independent frequently perform very poorly when they are tested using a different type of microphone or acoustical environment from the one with which they were trained. The use of microphones other than a 'close talking' headset also tends to severely degrade speech recognition -performance. Even in relatively quiet office environments, speech is degraded by additive noise from fans, slamming doors, and other conversations, as well as by the effects of unknown linear filtering arising reverberation from surface reflections in a room, or spectral shaping by microphones or the vocal tracts of individual speakers. Speech-recognition systems designed for long-distance telephone lines, or applications deployed in more adverse acoustical environments such as motor vehicles, factory floors, oroutdoors demand far greaterdegrees ofenvironmental robustness. There are several different ways of building acoustical robustness into speech recognition systems. Arrays of microphones can be used to develop a directionally-sensitive system that resists intelference from competing talkers and other noise sources that are spatially separated from the source of the desired speech signal. Codice articolo 9780792392842
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 212. Codice articolo 263056478
Quantità: 4 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190185788
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 212 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 5840001
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 212. Codice articolo 183056468
Quantità: 4 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Hardcover. Condizione: Like New. Like New. book. Codice articolo ERICA77307923928416
Quantità: 1 disponibili