Power supply current monitoring to detect CMOS IC defects during production testing quietly laid down its roots in the mid-1970s. Both Sandia Labs and RCA in the United States and Philips Labs in the Netherlands practiced this procedure on their CMOS ICs. At that time, this practice stemmed simply from an intuitive sense that CMOS ICs showing abnormal quiescent power supply current (IDDQ) contained defects. Later, this intuition was supported by data and analysis in the 1980s by Levi (RACD, Malaiya and Su (SUNY-Binghamton), Soden and Hawkins (Sandia Labs and the University of New Mexico), Jacomino and co-workers (Laboratoire d'Automatique de Grenoble), and Maly and co-workers (Carnegie Mellon University). Interest in IDDQ testing has advanced beyond the data reported in the 1980s and is now focused on applications and evaluations involving larger volumes of ICs that improve quality beyond what can be achieved by previous conventional means. In the conventional style of testing one attempts to propagate the logic states of the suspended nodes to primary outputs. This is done for all or most nodes of the circuit. For sequential circuits, in particular, the complexity of finding suitable tests is very high. In comparison, the IDDQ test does not observe the logic states, but measures the integrated current that leaks through all gates. In other words, it is like measuring a patient's temperature to determine the state of health. Despite perceived advantages, during the years that followed its initial announcements, skepticism about the practicality of IDDQ testing prevailed. The idea, however, provided a great opportunity to researchers. New results on test generation, fault simulation, design for testability, built-in self-test, and diagnosis for this style of testing have since been reported. After a decade of research, we are definitely closer to practice.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
IDDQ Testing: A Review.- Iddq Testing as a Component of a Test Suite: The Need for Several Fault Coverage Metrics.- Iddq Testing in CMOS Digital ASICs.- Reliability Benefits of IDDQ.- Quiescent Current Analysis and Experimentation of Defective CMOS Circuits.- QUIETEST: A Methodology for Selecting IDDQ Test Vectors.- Generation and Evaluation of Current and Logic Tests for Switch-Level Sequential Circuits.- Diagnosis of Leakage Faults with IDDQ.- Algorithms for IDDQ Measurement Based Diagnosis of Bridging Faults.- Proportional BIC Sensor for Current Testing.- Design of ICs Applying Built-in Current Testing.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 2,28 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.
Hardcover. Condizione: Very Good. No Jacket. Former library book; Missing dust jacket; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 0.15. Codice articolo G0792393155I4N11
Quantità: 1 disponibili
Da: Goodwill of Silicon Valley, SAN JOSE, CA, U.S.A.
Condizione: very_good. Supports Goodwill of Silicon Valley job training programs. The cover and pages are in very good condition! The cover and any other included accessories are also in very good condition showing some minor use. The spine is straight, there are no rips tears or creases on the cover or the pages. Codice articolo GWSVV.0792393155.VG
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 5165877-n
Quantità: 15 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condizione: new. Hardcover. Power supply current monitoring to detect CMOS IC defects during production testing quietly laid down its roots in the mid-1970s. Both Sandia Labs and RCA in the United States and Philips Labs in the Netherlands practised this procedure on their CMOS ICs. At that time, this practice stemmed simply from an intuitive sense that CMOS ICs showing abnormal quiescent power supply current (I-DDQ) contained defects. Later, this intuition was supported by data and analysis in the 1980s by Levi (RACD), Malaiya and Su (SUNY-Binghamton), Soden and Hawkins (Sandia Labs and the University of New Mexico), Jacomino and co-workers (Laboratoire d'Automatique de Grenoble), and maly and co-workers (Carnegie Mellon University). Interest in I-DDQ testing has advanced beyond the data reported in the 1980s and is now focused on applications and evaluations involving larger volumes of ICs that improve quality beyond what can be achieved by previous conventional means. In the conventional style of testing one attempts to propagate the logic states of the suspended nodes to primary outputs. This is done for all or most nodes of the circuit.For sequential circuits, in particular, the complexity of finding suitable tests is very high. In comparison, the I-DDQ test does not observe the logic states, but measures the integrated current that leaks through all gates. In other words, it is like measuring a patient's temperature to determine the state of health. Despite perceived advantages, during the years that followed its initial announcements, scepticism about the practicality of I-DDQ testing prevailed. The idea, however, provided a great opportunity to researchers. New results on test generation, fault simulation, design for testability, built-in self-test, and diagnosis for this style of testing have since been reported. Power supply current monitoring to detect CMOS IC defects during production testing quietly laid down its roots in the mid-1970s. New results on test generation, fault simulation, design for testability, built-in self-test, and diagnosis for this style of testing have since been reported. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9780792393153
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190185815
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792393153_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Power supply current monitoring to detect CMOS IC defects during production testing quietly laid down its roots in the mid-1970s. Both Sandia Labs and RCA in the United States and Philips Labs in the Netherlands practiced this procedure on their CMOS ICs. At that time, this practice stemmed simply from an intuitive sense that CMOS ICs showing abnormal quiescent power supply current (IDDQ) contained defects. Later, this intuition was supported by data and analysis in the 1980s by Levi (RACD, Malaiya and Su (SUNY-Binghamton), Soden and Hawkins (Sandia Labs and the University of New Mexico), Jacomino and co-workers (Laboratoire d'Automatique de Grenoble), and Maly and co-workers (Carnegie Mellon University). Interest in IDDQ testing has advanced beyond the data reported in the 1980s and is now focused on applications and evaluations involving larger volumes of ICs that improve quality beyond what can be achieved by previous conventional means. In the conventional style of testing one attempts to propagate the logic states of the suspended nodes to primary outputs. This is done for all or most nodes of the circuit. For sequential circuits, in particular, the complexity of finding suitable tests is very high. In comparison, the IDDQ test does not observe the logic states, but measures the integrated current that leaks through all gates. In other words, it is like measuring a patient's temperature to determine the state of health. Despite perceived advantages, during the years that followed its initial announcements, skepticism about the practicality of IDDQ testing prevailed. The idea, however, provided a great opportunity to researchers. New results on test generation, fault simulation, design for testability, built-in self-test, and diagnosis for this style of testing have since been reported. After a decade of research, we are definitely closer to practice. 132 pp. Englisch. Codice articolo 9780792393153
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 132. Codice articolo 263075702
Quantità: 4 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Power supply current monitoring to detect CMOS IC defects during production testing quietly laid down its roots in the mid-1970s. Both Sandia Labs and RCA in the United States and Philips Labs in the Netherlands practiced this procedure on their CMOS ICs. Codice articolo 5971403
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 132 68:B&W 7 x 10 in or 254 x 178 mm Case Laminate on White w/Gloss Lam. Codice articolo 5853609
Quantità: 4 disponibili