For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly? Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Foreword; B. Widrow. Foreword; D.E. Rummelhart. Preface. Part I: Computational Complexity of Neural Networks. 1. Neural Models and Spectral Methods; V. Roychowdhury, Kai-Yeung Siu, A. Orlitsky. 2. Depth-Efficient Threshold Circuits for Arithmetic Functions; T. Hofmeister. 3. Communication Complexity and Lower Bounds for Threshold Circuits; M. Goldmann. 4. A Comparison of the Computational Power of Sigmoid and Boolean Threshold Circuits; W. Maass, G. Schnitger, E.D. Sontag. 5. Computing on Analog Neural Nets with Arbitrary Real Weights; W. Maass. 6. Connectivity versus Capacity in the Hebb Rule; S.S. Venkatesh. Part II: Learning and Neural Networks. 7. Computational Learning Theory and Neural Networks: a Survey of Selected Topics; G. Turán. 8. Perspectives of Current Research about the Complexity of Learning on Neural Nets; W. Maass. 9. Learning an Intersection of K Halfspaces over a Uniform Distribution; A.L. Blum, R. Kannan. 10. On the Intractability of Loading Neural Networks; B. DasGupta, H.T. Siegelmann, E. Sontag. 11. Learning Boolean Functions via the Fourier Transform; Y. Mansour. 12. LMS and Backpropagation are Minimax Filters; B. Hassibi, A.H. Sayed, T. Kailath. 13. Supervised Learning: Can it Escape its Local Minimum? P.J. Werbos. Index.
Book by None
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 7,63 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9780792394785
Quantità: 2 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190185942
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792394785_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Codice articolo 5971524
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 496 Index. Codice articolo 263099857
Quantità: 4 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 496 pp. Englisch. Codice articolo 9780792394785
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines. 496 pp. Englisch. Codice articolo 9780792394785
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 496 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Codice articolo 5829390
Quantità: 4 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - For any research field to have a lasting impact, there must be a firm theoretical foundation. Neural networks research is no exception. Some of the founda tional concepts, established several decades ago, led to the early promise of developing machines exhibiting intelligence. The motivation for studying such machines comes from the fact that the brain is far more efficient in visual processing and speech recognition than existing computers. Undoubtedly, neu robiological systems employ very different computational principles. The study of artificial neural networks aims at understanding these computational prin ciples and applying them in the solutions of engineering problems. Due to the recent advances in both device technology and computational science, we are currently witnessing an explosive growth in the studies of neural networks and their applications. It may take many years before we have a complete understanding about the mechanisms of neural systems. Before this ultimate goal can be achieved, an swers are needed to important fundamental questions such as (a) what can neu ral networks do that traditional computing techniques cannot, (b) how does the complexity of the network for an application relate to the complexity of that problem, and (c) how much training data are required for the resulting network to learn properly Everyone working in the field has attempted to answer these questions, but general solutions remain elusive. However, encouraging progress in studying specific neural models has been made by researchers from various disciplines. Codice articolo 9780792394785
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 496. Codice articolo 183099867
Quantità: 4 disponibili