Mathematical morphology (MM) is a powerful methodology for the quantitative analysis of geometrical structures. It consists of a broad and coherent collection of theoretical concepts, nonlinear signal operators, and algorithms aiming at extracting, from images or other geometrical objects, information related to their shape and size. Its mathematical origins stem from set theory, lattice algebra, and integral and stochastic geometry.
MM was initiated in the late 1960s by G. Matheron and J. Serra at the Fontainebleau School of Mines in France. Originally it was applied to analyzing images from geological or biological specimens. However, its rich theoretical framework, algorithmic efficiency, easy implementability on special hardware, and suitability for many shape- oriented problems have propelled its widespread diffusion and adoption by many academic and industry groups in many countries as one among the dominant image analysis methodologies.
The purpose of Mathematical Morphology and its Applications to Image and Signal Processing is to provide the image analysis community with a sampling from the current developments in the theoretical (deterministic and stochastic) and computational aspects of MM and its applications to image and signal processing. The book consists of the papers presented at the ISMM'96 grouped into the following themes:
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface. Theory. Metric Convexity in the Context of Mathematical Morphology; P.K. Ghosh, H.J.A.M. Heijmans. Support Function and Minkowski Addition of Non-Convex Sets; M. Schmitt. Lattice Operators Underlying Dynamic Systems; J. Mattioli, et al. Comparison of Multiscale Morphology Approaches: PDE Implemented via Curve Evolution Versus Chamfer Distance Transforms; M.A. Butt, P. Maragos. An Attribute-Based Approach to Mathematical Morphology; E. Breen, R. Jones. Spatially-Variant Mathematical Morphology: Minimal Basis Representation; M. Charif-Chefchaouni, D. Schonfeld.The Generalized Tailor Problem; J.B.T.M. Roerdink. Discrete Random Functions: Modeling and Analysis Using Mathematical Morphology; B. Singh, M.U. Siddiqi. Morphological Sampling of Random Closed Sets; K. Sivakumar, J. Goutsias. Connectivity. Connectivity on Complete Lattices; J. Serra. Practical Extensions of Connected Operators; P. Salembier, A. Oliveras. Region Adjacency Graphs and Connected Morphological Operators; F.K. Potjer. Space Connectivity and Translation-Invariance; J. Crespo. Filtering. Morphological Filters for Dummies; H.J.A.M. Heijmans. Alternating Sequential Filters by Adaptive-Neighborhood Structuring Functions; U.M. Braga Neto. Quadratic Structuring Functions in Mathematical Morphology; R. van den Boomgaard, et al. MRL-Filters and their Adaptive Optimal Design for Image Processing; L. Pessoa, P. Maragos. Weighted Composite Order-Statistics Filters: Optimal Morphological Pattern Recognition; D. Schonfeld. Nonlinear Systems Related to Morphology. Links Between Mathematical Morphology, Rough Sets, Fuzzy Logic and Higher Order Neural Networks; S. Skoneczny, et al. Grey-Scale Soft Morphological Filter Optimization by Genetic Algorithms; N.R. Harvey, S. Marshall. Soft Morphological Operators Based on Nonlinear Lp Mean Operators; M. Pappas, I. Pitas. The Viterbi Optimal Runlength- Constrained Approximation Nonlinear Filter; N.D. Sidiropoulos. Algorithms, Architectures. Recursive Morphology Using Line Structuring Elements; D.C. Nadadur, R.M. Haralick. A Morphological Algorithm for Linear Segment Detection; H. Talbot. Toward the Optimal Decomposition of Arbitrarily Shaped Structuring Elements by Means of a Genetic Approach; G. Anelli, et al. A Data Dependent Architecture Based on Seeded Region Growing Strategy for Advanced Morphological Operators; D. Noguet, et al. Implementing Morphological Image Operators via Trained Neural Networks; C.B. Herwig, R.J. Schalkoff. Granulometries, Texture. Optimal and Adaptive Design of Reconstructive Granulometric Filters; E.R. Dougherty, Y. Chen. Periodic Lines and Their Application to Granulometries; R. Jones, P. Soille. Local Grayscale Granulometries Based on Opening Trees; L. Vincent. Integrating Size Information into Intensity Histogram; R.A. Lotufo, E. Trettel. Probabilistic Model of Rough Surfaces Obtained by Electro-Erosion; D. Jeulin, P. Laurenge. A Textural Analysis by Mathematical Morphology; F. Huet, J. Mattioli. Segmentation. Computation of Watersheds Based on Parallel Graph Algorithms; A. Meijster, J.B.T.M. Roerdink. Segmentation Algorithm by Multicriteria Region Merging; B. Marcotegui. Temporal Stability in Sequence Segmentation Using the Watershed Algorithm; F. Marqués. The Dynamics of Minima and Contours; F. Meyer. A Morphological Interpolation Method for Mo
Book by None
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 22,50 per la spedizione da Francia a U.S.A.
Destinazione, tempi e costiEUR 13,85 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiDa: Ammareal, Morangis, Francia
Hardcover. Condizione: Bon. Ancien livre de bibliothèque. Légères traces d'usure sur la couverture. Pages cornées. Edition 1996. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Slight signs of wear on the cover. Dog-eared pages. Edition 1996. Ammareal gives back up to 15% of this item's net price to charity organizations. Codice articolo E-563-397
Quantità: 1 disponibili
Da: HPB-Red, Dallas, TX, U.S.A.
hardcover. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_374441092
Quantità: 1 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher. Codice articolo 1658205/3
Quantità: 1 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Codice articolo 1658205/2
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792397335_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 269154-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 269154-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 269154
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 269154
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Mathematical morphology (MM) is a powerful methodology for the quantitative analysis of geometrical structures. It consists of a broad and coherent collection of theoretical concepts, nonlinear signal operators, and algorithms aiming at extracting, from . Codice articolo 458443889
Quantità: Più di 20 disponibili