Loosely speaking, adaptive systems are designed to deal with, to adapt to, chang ing environmental conditions whilst maintaining performance objectives. Over the years, the theory of adaptive systems evolved from relatively simple and intuitive concepts to a complex multifaceted theory dealing with stochastic, nonlinear and infinite dimensional systems. This book provides a first introduction to the theory of adaptive systems. The book grew out of a graduate course that the authors taught several times in Australia, Belgium, and The Netherlands for students with an engineering and/or mathemat ics background. When we taught the course for the first time, we felt that there was a need for a textbook that would introduce the reader to the main aspects of adaptation with emphasis on clarity of presentation and precision rather than on comprehensiveness. The present book tries to serve this need. We expect that the reader will have taken a basic course in linear algebra and mul tivariable calculus. Apart from the basic concepts borrowed from these areas of mathematics, the book is intended to be self contained.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From the reviews:
"This book is intended to be a first introduction to the theory of adaptive systems for graduate students. It treats exclusively deterministic adaptive control in a discrete-time formulation.... The basic course material contained in Chapters 1, 2, 3, 4, 5, and 6 is supplemented with the presentation of more advanced problems and tools such as well-posedness of the control problem during adaptation (Chapter 7), averaging techniques for analysis of adaptive systems (Chapter 8), and global dynamical analysis of adaptive systems operating in a plant-model mismatch situation (Chapter 9)." ―Mathematical Reviews
"The book is based on graduate courses taught by both authors and is intended as a text-book. Therefore it is self contained and only basic knowledge of linear algebra and ordinary differential equations is needed. ... cover the basic theory of adaptive systems and can be used for a one trimester course. ... The book is accompanied by many solved and unsolved exercises, two Maple procedures and a large bibliography." (EMS Newsletter, Issue 27, March, 1998)
1 Adaptive Systems.- 1.1 Introduction.- 1.2 Adaptive systems: examples.- 1.2.1 Adaptive control.- 1.2.2 Adaptive signal processing.- 1.2.3 Adaptive systems versus classical techniques.- 1.3 General structure of adaptive control systems.- 1.3.1 Introduction.- 1.3.2 The general structure.- 1.3.3 The error signal.- 1.3.4 The tuner.- 1.3.5 Certainty equivalence.- 1.3.6 Design and analysis.- 1.4 Illustrating the concepts.- 1.4.1 The MIT rule for adaptive control: feedforward case.- 1.4.2 The MIT rule for adaptive control: feedback problem.- 1.4.3 An adaptive pole placement scheme.- 1.4.4 A universal controller.- 1.4.5 Echo cancelling.- 1.5 Summary of chapter.- 1.6 Notes and references.- 1.7 Exercises.- 2 Systems And Their Representations.- 2.1 Introduction.- 2.2 Notation.- 2.3 The behavior.- 2.4 Latent variables.- 2.5 Equivalent representations.- 2.6 Controllability.- 2.7 Observability.- 2.8 Stability.- 2.9 Elimination of Latent variables.- 2.10 The ring ?[?,??1].- 2.11 An example.- 2.12 A word about the notation.- 2.13 Summary of chapter.- 2.14 Notes and references.- 3 Adaptive systems : principles of identification.- 3.1 Introduction.- 3.2 Object of interest and model class.- 3.2.1 Object of interest.- 3.2.2 Model class.- 3.3 Identification criterion and algorithms.- 3.3.1 Least squares identification.- 3.3.2 Recursive Least Squares (RLS).- 3.3.3 Projection algorithm.- 3.3.3.1 Basic projection algorithm.- 3.3.3.2 Normalized Least Mean Square (NLMS).- 3.3.3.3 Projection with dead zone.- 3.3.3.4 Least Mean Square Algorithm (LMS).- 3.4 Data model assumptions.- 3.4.1 Stable data filter.- 3.4.2 Data in model class.- 3.4.3 Information content of data.- 3.4.4 Data do not fit model class.- 3.5 Analysis of identification algorithms.- 3.5.1 Properties of recursive least squares.- 3.5.1.1 Consistency for RLS.- 3.5.1.2 Consistency with model errors for RLS.- 3.5.2 Properties of the NLMS algorithm.- 3.5.2.1 With NLMS the equation error converges.- 3.5.2.2 Consistency for NLMS.- 3.5.2.3 Consistency with model errors for NLMS.- 3.5.3 Projection algorithm with dead zone.- 3.5.4 Tracking properties.- 3.5.4.1 NLMS algorithm can track.- 3.5.4.2 RLS algorithm cannot track.- 3.5.5 Incorporating prior knowledge in algorithms.- 3.6 Persistency of excitation.- 3.7 Summary of chapter.- 3.8 Notes and references.- 3.9 Exercises.- 4 Adaptive Pole Assignment.- 4.1 Introduction.- 4.2 Preliminaries.- 4.3 The system and its representations.- 4.4 Equilibrium analysis.- 4.4.1 The error model.- 4.4.2 How much can be learned, and how much must be learned?.- 4.5 An algorithm for adaptive pole assignment.- 4.5.1 The adaptive system.- 4.6 Analysis of the algorithm.- 4.6.1 Nonminimal representation.- 4.6.2 Minimal representation.- 4.7 Filtered signals.- 4.7.1 Filter representation of i/o systems.- 4.7.2 Application to adaptive pole assignment.- 4.8 Modification of the projection algorithm.- 4.9 Summary of chapter.- 4.10 Notes and references.- 4.11 Exercises.- 5 Direct Adaptive Model Reference Control.- 5.1 Introduction.- 5.2 Basic problem definition.- 5.3 Model reference control: nonadaptive solution.- 5.4 Error model construction.- 5.5 Equilibrium analysis.- 5.6 Adaptive algorithm.- 5.6.1 Adaptive model reference control algorithm.- 5.7 Analysis of the adaptive system.- 5.7.1 Stability of the adaptive system.- 5.7.2 Parameter convergence?.- 5.8 Adaptive model reference control with disturbance rejection.- 5.8.1 The Internal Model Principle.- 5.8.2 Model reference control with disturbance rejection.- 5.8.3 Adaptive model reference control with known disturbance rejection.- 5.8.4 Adaptive model reference and disturbance rejection control.- 5.9 Summary of chapter.- 5.10 Notes and references.- 5.11 Exercises.- 6 Universal Controllers.- 6.1 Introduction.- 6.2 Existence of solutions.- 6.3 The first order case.- 6.3.1 Sign b known.- 6.3.2 The Nussbaum controller: sign b unknown.- 6.3.3 The Willems&Byrnes controller: sign b unknown.- 6.4 Higher order systems.- 6.4.1 High gain feedback.- 6.4.2 Willems-Byrnes controller: sign of qn?1 known.- 6.4.3 Willems-Byrnes controller: sign qn?1 unknown.- 6.5 Mårtensson’s algorithm.- 6.5.1 The adaptive control problem.- 6.5.2 The main result.- 6.5.3 Dense curves.- 6.5.4 A dense curve based on an enumeration of ?N.- 6.6 Summary of chapter.- 6.7 Notes and references.- 6.8 Exercises.- 7 The pole/zero cancellation problem.- 7.1 Introduction.- 7.2 The pole/zero cancellation problem in adaptive control.- 7.3 Combining direct and indirect adaptive control.- 7.3.1 The first order case.- 7.3.1.1 Problem statement and reparametrization.- 7.3.1.2 Equilibrium analysis.- 7.3.1.3 Adaptive algorithm.- 7.3.2 The higher order case.- 7.3.2.1 Problem statement and reparametrization.- 7.3.2.2 Equilibrium analysis.- 7.3.2.3 Adaptive algorithm.- 7.4 Adaptive Excitation.- 7.4.1 The first order case.- 7.4.1.1 Problem statement.- 7.4.1.2 Adaptive algorithm.- 7.4.2 The higher order case.- 7.4.2.1 Problem statement.- 7.4.2.2 Adaptive algorithm.- 7.5 A more fundamental viewpoint.- 7.5.1 The connection with tunability.- 7.5.2 Alternative parametrizations.- 7.6 Conclusions.- 7.7 Summary of chapter.- 7.8 Notes and references.- 7.9 Exercises.- 8 Averaging Analysis For Adaptive Systems.- 8.1 Introduction.- 8.2 Averaging.- 8.2.1 An illustration.- 8.2.2 Some notation and preliminaries.- 8.2.3 Finite horizon averaging result.- 8.2.4 Infinite horizon result.- 8.3 Transforming an adaptive system into standard form.- 8.4 Averaging approximation.- 8.5 Application: the MIT rule for adaptive control.- 8.5.1 System description.- 8.5.2 Frozen system for MIT rule.- 8.5.3 Averaging for MIT rule.- 8.5.4 Interpretation of averaged system.- 8.5.4.1 Case I: Reference model equals plant Zm ? Zp.- 8.5.4.2 Case II: Constant reference signal.- 8.5.4.3 Case III: General problem.- 8.5.4.4 How slow is slow adaptation?.- 8.6 Application: echo cancellation in telephony.- 8.6.1 Echo cancellation.- 8.6.2 System description and assumptions.- 8.6.3 Analysis.- 8.6.3.1 The frozen system.- 8.6.3.2 The averaged update equation.- 8.6.3.3 Analysis of the averaged equation.- 8.6.3.4 DEC system behavior.- 8.6.3.5 General observations.- 8.7 Summary of chapter.- 8.8 Notes and references.- 8.9 Exercises.- 9 Dynamics of adaptive systems: A case study.- 9.1 Introduction.- 9.2 The example.- 9.3 Global analysis and bifurcations.- 9.4 Adaptive system behavior: ideal case.- 9.5 Adaptive system behavior: undermodelled case.- 9.5.1 Parameter range.- 9.5.2 Equilibria.- 9.5.3 Beyond period 1 bifurcations.- 9.5.4 Summary d ? 0.- 9.5.5 Flip bifurcation revisited.- 9.6 Discussion.- 9.7 Summary of chapter.- 9.8 Notes and References.- 9.9 Exercises.- Epilogue.- A Background material.- A.1 A contraction result.- A.2 The Comparison Principle.- A.2.1 Bellman-Gronwall Lemma.- A.2.2 Perturbed linear stable systems.- A.3 Miscellaneous stability results.- A.3.1 Stability Definitions.- A.3.2 Some Lyapunov stability results.- A.4 Detectability.- A.5 An inequality for linear systems.- A.6 Finite horizon averaging result.- A.7 Maple code for solving Lyapunov equations.- A.8 Maple code for fixed points and two periodic solutions.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 15,45 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Hardcover. Condizione: As New. No Jacket. Pages are clean and are not marred by notes or folds of any kind. ~ ThriftBooks: Read More, Spend Less. Codice articolo G0817638776I2N00
Quantità: 1 disponibili
Da: Better World Books, Mishawaka, IN, U.S.A.
Condizione: Good. Used book that is in clean, average condition without any missing pages. Codice articolo 16373820-6
Quantità: 1 disponibili
Da: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Codice articolo 567586/202
Quantità: 4 disponibili
Da: Anybook.com, Lincoln, Regno Unito
Condizione: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,800grams, ISBN:9780817638771. Codice articolo 3701910
Quantità: 1 disponibili
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Loosely speaking, adaptive systems are designed to deal with, to adapt to, chang ing environmental conditions whilst maintaining performance objectives. Over the years, the theory of adaptive systems evolved from relatively simple and intuitive concepts to a complex multifaceted theory dealing with stochastic, nonlinear and infinite dimensional systems. This book provides a first introduction to the theory of adaptive systems. The book grew out of a graduate course that the authors taught several times in Australia, Belgium, and The Netherlands for students with an engineering and/or mathemat ics background. When we taught the course for the first time, we felt that there was a need for a textbook that would introduce the reader to the main aspects of adaptation with emphasis on clarity of presentation and precision rather than on comprehensiveness. The present book tries to serve this need. We expect that the reader will have taken a basic course in linear algebra and mul tivariable calculus. Apart from the basic concepts borrowed from these areas of mathematics, the book is intended to be self contained. 364 pp. Englisch. Codice articolo 9780817638771
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -Loosely speaking, adaptive systems are designed to deal with, to adapt to, chang ing environmental conditions whilst maintaining performance objectives. Over the years, the theory of adaptive systems evolved from relatively simple and intuitive concepts to a complex multifaceted theory dealing with stochastic, nonlinear and infinite dimensional systems. This book provides a first introduction to the theory of adaptive systems. The book grew out of a graduate course that the authors taught several times in Australia, Belgium, and The Netherlands for students with an engineering and/or mathemat ics background. When we taught the course for the first time, we felt that there was a need for a textbook that would introduce the reader to the main aspects of adaptation with emphasis on clarity of presentation and precision rather than on comprehensiveness. The present book tries to serve this need. We expect that the reader will have taken a basic course in linear algebra and mul tivariable calculus. Apart from the basic concepts borrowed from these areas of mathematics, the book is intended to be self contained. 364 pp. Englisch. Codice articolo 9780817638771
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780817638771_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Gebundene Ausgabe. Condizione: Sehr gut. Gebraucht - Sehr gut Mängelexemplar mit leichten Lagerspuren, Sofortversand. Codice articolo INF1000137768
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 206980-n
Quantità: Più di 20 disponibili