Introduction to the Galois Correspondence - Rilegato

Fenrick, Maureen H.

 
9780817640262: Introduction to the Galois Correspondence

Sinossi

If we define a real number c to be constructible if, and only if, the point (c, 0) can be constructed starting with the points (0,0) and (1,0), then we may show that the set of constructible numbers is a subfield of the field R of real numbers containing the field Q of rational numbers.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Recensione

"It is the clearest this reviewer has ever seen... Particularly remarkable is the author's avoidance of all temptations to give pretty proofs of neatly arranged theorems at the cost of clarity... Highly recommended".

--Gian-Carlo Rota

Contenuti

I. Preliminaries - Groups and Rings.- 1. Introduction to Groups.- 2. Quotient Groups and Sylow Subgroups.- 3. Finite Abelian Groups and Solvable Groups.- 4. Introduction to Rings.- 5. Factoring in F[x].- II. Field Extensions.- 1. Simple Extensions.- 2. Algebraic Extensions.- 3. Splitting Fields and Normal Extensions.- III. The Galois Correspondence.- 1. The Fundamental Correspondence.- 2. The Solvable Correspondence.- IV. Applications.- 1. Constructibility.- 2. Roots of Unity.- 3. Wedderburn’s Theorem.- 3. Dirichlet’s Theorem and Finite Abelian Groups.- Appendix A - Groups.- 1. Group Actions and the Sylow Theorems.- 2. Free Groups, Generators and Relations.- Appendix B - Factoring in Integral Domains.- 1. Euclidean Domains and Principal Ideal Domains.- 2. Prime and Irreducible Elements.- 3. Unique Factorization Domains.- Appendix C - Vector Spaces.- 1. Subspaces, Linear Independence and Spanning.- 2. Bases and Dimension.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo