Part I. Basic concepts.- The simplest examples.- The classes Sigma^ I .- The quadratic differential of a map.- The local algebra of a map and the Weierstrass preparation theorem.- The local multiplicity of a holomorphic map.- Stability and infinitesimal stability.- The proof of the stability theorem.- Versal deformations.- The classification of stable germs by genotype.- Review of further results.- Part II. Critical points of smooth functions.- A start to the classification of critical points.- Quasihomogeneous and semiquasihomogeneous singularities.- The classification of quasihomogeneous functions.- Spectral sequences for the reduction to normal forms.- Lists of singularities.- The determinator of singularities.- Real, symmetric and boundary singularities.- Part III. Singularities of caustics and wave fronts.- Lagrangian singularities.- Generating families.- Legendrian singularities.- The classification of Lagrangian and Legendrian singularities.- The bifurcation of caustics and wave fronts.- References.- Further references.- Subject Index.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
(nessuna copia disponibile)
Cerca: Inserisci un desiderataNon riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!
Inserisci un desiderata