Articoli correlati a Multi-Interval Linear Ordinary Boundary Value Problems...

Multi-Interval Linear Ordinary Boundary Value Problems and Complex Symplectic Algebra - Brossura

 
9780821826690: Multi-Interval Linear Ordinary Boundary Value Problems and Complex Symplectic Algebra

Sinossi

A multi-interval quasi-differential system $\{I_{r},M_{r},w_{r}:r\in\Omega\}$ consists of a collection of real intervals, $\{I_{r}\}$, as indexed by a finite, or possibly infinite index set $\Omega$ (where $\mathrm{card} (\Omega)\geq\aleph_{0}$ is permissible), on which are assigned ordinary or quasi-differential expressions $M_{r}$ generating unbounded operators in the Hilbert function spaces $L_{r}^{2}\equiv L^{2}(I_{r};w_{r})$, where $w_{r}$ are given, non-negative weight functions.For each fixed $r\in\Omega$ assume that $M_{r}$ is Lagrange symmetric (formally self-adjoint) on $I_{r}$ and hence specifies minimal and maximal closed operators $T_{0,r}$ and $T_{1,r}$, respectively, in $L_{r}^{2}$. However the theory does not require that the corresponding deficiency indices $d_{r}^{-}$ and $d_{r}^{+}$ of $T_{0,r}$ are equal (e. g. the symplectic excess $Ex_{r}=d_{r}^{+}-d_{r}^{-}\neq 0$), in which case there will not exist any self-adjoint extensions of $T_{0,r}$ in $L_{r}^{2}$. In this paper a system Hilbert space $\mathbf{H}:=\sum_{r\,\in\,\Omega}\oplus L_{r}^{2}$ is defined (even for non-countable $\Omega$) with corresponding minimal and maximal system operators $\mathbf{T}_{0}$ and $\mathbf{T}_{1}$ in $\mathbf{H}$.Then the system deficiency indices $\mathbf{d}^{\pm} =\sum_{r\,\in\, \Omega}d_{r}^{\pm}$ are equal (system symplectic excess $Ex=0$), if and only if there exist self-adjoint extensions $\mathbf{T}$ of $\mathbf{T}_{0}$ in $\mathbf{H}$. The existence is shown of a natural bijective correspondence between the set of all such self-adjoint extensions $\mathbf{T}$ of $\mathbf{T}_{0}$, and the set of all complete Lagrangian subspaces $\mathsf{L}$ of the system boundary complex symplectic space $\mathsf{S}=\mathbf{D(T}_{1})/\mathbf{D(T}_{0})$. This result generalizes the earlier symplectic version of the celebrated GKN-Theorem for single interval systems to multi-interval systems. Examples of such complete Lagrangians, for both finite and infinite dimensional complex symplectic $\mathsf{S}$, illuminate new phenoma for the boundary value problems of multi-interval systems. These concepts have applications to many-particle systems of quantum mechanics, and to other physical problems.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

64 p. Ex-library with stamp and...
Visualizza questo articolo

EUR 7,00 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Risultati della ricerca per Multi-Interval Linear Ordinary Boundary Value Problems...

Immagini fornite dal venditore

Everitt, William Norrie:
ISBN 10: 0821826697 ISBN 13: 9780821826690
Antico o usato Softcover

Da: Antiquariat Bookfarm, Löbnitz, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Softcover. 64 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-05543 9780821826690 Sprache: Englisch Gewicht in Gramm: 550. Codice articolo 2491797

Contatta il venditore

Compra usato

EUR 68,00
Convertire valuta
Spese di spedizione: EUR 7,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Everitt, W. N., Markus, L.
Editore: Amer Mathematical Society, 2001
ISBN 10: 0821826697 ISBN 13: 9780821826690
Antico o usato mass_market

Da: dsmbooks, Liverpool, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

mass_market. Condizione: Very Good. Very Good. book. Codice articolo D8S0-3-M-0821826697-4

Contatta il venditore

Compra usato

EUR 82,15
Convertire valuta
Spese di spedizione: EUR 29,12
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello