A diverse selection of data science topics explored through a mathematical lens.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Simon Foucart is Professor of Mathematics at Texas A&M University, where he was named Presidential Impact Fellow in 2019. He has previously written, together with Holger Rauhut, the influential book A Mathematical Introduction to Compressive Sensing (2013).
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2317530130534
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. New edition NO-PA16APR2015-KAP. Codice articolo 26386891245
Quantità: 1 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-276394
Quantità: 1 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Excellent Customer Service. Codice articolo ABEOCT25-134742
Quantità: 1 disponibili
Da: SMASS Sellers, IRVING, TX, U.S.A.
Condizione: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Codice articolo ASNT3-276394
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 393790002
Quantità: 1 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts. This text explores a diverse set of data science topics through a mathematical lens, helping mathematicians become acquainted with data science in general, and machine learning, optimal recovery, compressive sensing, optimization, and neural networks in particular. It will also be valuable to data scientists seeking mathematical sophistication. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781009001854
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18386891239
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 350 pages. 9.00x6.00x0.71 inches. In Stock. This item is printed on demand. Codice articolo __100900185X
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781009001854_new
Quantità: Più di 20 disponibili