Causal inference and machine learning are typically introduced in the social sciences separately as theoretically distinct methodological traditions. However, applications of machine learning in causal inference are increasingly prevalent. This Element provides theoretical and practical introductions to machine learning for social scientists interested in applying such methods to experimental data. We show how machine learning can be useful for conducting robust causal inference and provide a theoretical foundation researchers can use to understand and apply new methods in this rapidly developing field. We then demonstrate two specific methods – the prediction rule ensemble and the causal random forest – for characterizing treatment effect heterogeneity in survey experiments and testing the extent to which such heterogeneity is robust to out-of-sample prediction. We conclude by discussing limitations and tradeoffs of such methods, while directing readers to additional related methods available on the Comprehensive R Archive Network (CRAN).
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,11 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 11,55 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 75 pages. 9.00x6.00x0.17 inches. In Stock. This item is printed on demand. Codice articolo __1009168223
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781009168229
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 133. Codice articolo C9781009168229
Quantità: Più di 20 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Machine Learning for Experiments in the Social Sciences 0.27. Book. Codice articolo BBS-9781009168229
Quantità: 5 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 45647782-n
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Inhaltsverzeichnis1. Introduction 2. Causal Inference 3. Exploratory and Reproducible Research 4. Machine Learning Basics 5. Bringing it Together 6. Prediction Rule Ensembles 7. Causal Random Forest 8. Conclusion References. Codice articolo 810033681
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 45647782
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 45647782-n
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Neuware - 'Causal inference and machine learning are typically introduced in the social sciences separately as theoretically distinct methodological traditions. However, applications of machine learning in causal inference are increasingly prevalent. This Element provides theoretical and practical introductions to machine learning for social scientists interested in applying such methods to experimental data. We show how machine learning can be useful for conducting robust causal inference and provide a theoretical foundation researchers can use to understand and apply new methods in this rapidly developing field. We then demonstrate two specific methods - the prediction rule ensemble and the causal random forest - for characterizing treatment effect heterogeneity in survey experiments and testing the extent to which such heterogeneity is robust to out-of-sample prediction. We conclude by discussing the limitations and tradeoffs of such methods, while directing readers to additional related methods available on the Comprehensive R Archive Network (CRAN)'--. Codice articolo 9781009168229
Quantità: 2 disponibili
Da: Lady BookHouse, Belmont, MA, U.S.A.
paperback. Condizione: As New. This book may be an ex-library item. Codice articolo SST01252
Quantità: 1 disponibili