This new edition includes inverse reinforcement learning, non-parametric Bayesian inference, variational Bayes and conformal prediction.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Vikram Krishnamurthy is Professor of Electrical and Computer Engineering at Cornell University. From 2002 to 2016, he was Professor and Senior Canada Research Chair in Statistical Signal Processing at the University of British Columbia. His research contributions are in statistical signal processing, stochastic optimization and control, with applications in social networks, adaptive radar systems and biological ion channels. He is a Fellow of IEEE and served as Distinguished Lecturer for the IEEE Signal Processing Society and Editor-in-Chief of IEEE Journal of Selected Topics in Signal Processing. He was awarded an honorary doctorate from the Royal Institute of Technology (KTH) Sweden in 2014.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Books From California, Simi Valley, CA, U.S.A.
hardcover. Condizione: Very Good. Codice articolo mon0003935066
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781009449434_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
hardcover. Condizione: New. Codice articolo 6666-GRD-9781009449434
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 49560056-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 49560056-n
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condizione: new. Hardcover. Covering formulation, algorithms and structural results and linking theory to real-world applications in controlled sensing (including social learning, adaptive radars and sequential detection), this book focuses on the conceptual foundations of partially observed Markov decision processes (POMDPs). It emphasizes structural results in stochastic dynamic programming, enabling graduate students and researchers in engineering, operations research, and economics to understand the underlying unifying themes without getting weighed down by mathematical technicalities. In light of major advances in machine learning over the past decade, this edition includes a new Part V on inverse reinforcement learning as well as a new chapter on non-parametric Bayesian inference (for Dirichlet processes and Gaussian processes), variational Bayes and conformal prediction. This survey of formulation, algorithms, and structural results in POMDPs focuses on underlying concepts and connections to real-world applications in controlled sensing, keeping technical machinery to a minimum. The new edition includes inverse reinforcement learning, non-parametric Bayesian inference, variational Bayes and conformal prediction. This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781009449434
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 2nd edition. 651 pages. 7.00x1.38x10.00 inches. In Stock. This item is printed on demand. Codice articolo __1009449435
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 49560056
Quantità: Più di 20 disponibili
Da: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9781009449434
Quantità: 7 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 49560056
Quantità: Più di 20 disponibili