Despite the unobserved components model (UCM) having many advantages over more popular forecasting techniques based on regression analysis, exponential smoothing, and ARIMA, the UCM is not well known among practitioners outside the academic community. Time Series Modelling with Unobserved Components rectifies this deficiency by giving a practical overview of the UCM approach, covering some theoretical details, several applications, and the software for implementing UCMs.
The book’s first part discusses introductory time series and prediction theory. Unlike most other books on time series, this text includes a chapter on prediction at the beginning because the problem of predicting is not limited to the field of time series analysis.
The second part introduces the UCM, the state space form, and related algorithms. It also provides practical modeling strategies to build and select the UCM that best fits the needs of time series analysts.
The third part presents real-world applications, with a chapter focusing on business cycle analysis and the construction of band-pass filters using UCMs. The book also reviews software packages that offer ready-to-use procedures for UCMs as well as systems popular among statisticians and econometricians that allow general estimation of models in state space form.
This book demonstrates the numerous benefits of using UCMs to model time series data. UCMs are simple to specify, their results are easy to visualize and communicate to non-specialists, and their forecasting performance is competitive. Moreover, various types of outliers can easily be identified, missing values are effortlessly managed, and working contemporaneously with time series observed at different frequencies poses no problem.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Matteo M. Pelagatti
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 16,93 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Matteo M. PelagattiDespite the unobserved components model (UCM) having many advantages over more popular forecasting techniques based on regression analysis, exponential smoothing, and ARIMA, the UCM is not well known among practitioners . Codice articolo 487066202
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Despite the unobserved components model (UCM) having many advantages over more popular forecasting techniques based on regression analysis, exponential smoothing, and ARIMA, the UCM is not well known among practitioners outside the academic community. Time Series Modelling with Unobserved Components rectifies this deficiency by giving a practical overview of the UCM approach, covering some theoretical details, several applications, and the software for implementing UCMs.The book's first part discusses introductory time series and prediction theory. Unlike most other books on time series, this text includes a chapter on prediction at the beginning because the problem of predicting is not limited to the field of time series analysis.The second part introduces the UCM, the state space form, and related algorithms. It also provides practical modeling strategies to build and select the UCM that best fits the needs of time series analysts.The third part presents real-world applications, with a chapter focusing on business cycle analysis and the construction of band-pass filters using UCMs. The book also reviews software packages that offer ready-to-use procedures for UCMs as well as systems popular among statisticians and econometricians that allow general estimation of models in state space form.This book demonstrates the numerous benefits of using UCMs to model time series data. UCMs are simple to specify, their results are easy to visualize and communicate to non-specialists, and their forecasting performance is competitive. Moreover, various types of outliers can easily be identified, missing values are effortlessly managed, and working contemporaneously with time series observed at different frequencies poses no problem. 276 pp. Englisch. Codice articolo 9781032098432
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 379184774
Quantità: 3 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781032098432
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 43011931
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 185. Codice articolo B9781032098432
Quantità: 1 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781032098432
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 43011931-n
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 275 pages. 9.21x6.14x0.67 inches. In Stock. This item is printed on demand. Codice articolo __1032098430
Quantità: 1 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781032098432
Quantità: Più di 20 disponibili