Bayesian Inference: Theory, Methods, Computations provides a comprehensive coverage of the fundamentals of Bayesian inference from all important perspectives, namely theory, methods and computations.
All theoretical results are presented as formal theorems, corollaries, lemmas etc., furnished with detailed proofs. The theoretical ideas are explained in simple and easily comprehensible forms, supplemented with several examples. A clear reasoning on the validity, usefulness, and pragmatic approach of the Bayesian methods is provided. A large number of examples and exercises, and solutions to all exercises, are provided to help students understand the concepts through ample practice.
The book is primarily aimed at first or second semester master students, where parts of the book can also be used at Ph.D. level or by research community at large. The emphasis is on exact cases. However, to gain further insight into the core concepts, an entire chapter is dedicated to computer intensive techniques. Selected chapters and sections of the book can be used for a one-semester course on Bayesian statistics.
Key Features:
Silvelyn Zwanzig is a Professor for Mathematical Statistics at Uppsala University. She studied Mathematics at the Humboldt University of Berlin. Before coming to Sweden, she was Assistant Professor at the University of Hamburg in Germany. She received her Ph.D. in Mathematics at the Academy of Sciences of the GDR. She has taught Statistics to undergraduate and graduate students since 1991. Her research interests include theoretical statistics and computer-intensive methods.
Rauf Ahmad is Associate Professor at the Department of Statistics, Uppsala University. He did his Ph.D. at the University of Göttingen, Germany. Before joining Uppsala University, he worked at the Division of Mathematical Statistics, Department of Mathematics, Linköping University, and at Biometry Division, Swedish University of Agricultural Sciences, Uppsala. He has taught Statistics to undergraduate and graduate students since 1995. His research interests include high-dimensional inference, mathematical statistics, and U-statistics.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Silvelyn Zwanzig is a Professor for Mathematical Statistics at Uppsala University. She studied Mathematics at the Humboldt University in Berlin. Before coming to Sweden, she was Assistant Professor at the University of Hamburg in Germany. She received her Ph.D. in Mathematics at the Academy of Sciences of the GDR. She has taught Statistics to undergraduate and graduate students since 1991. Her research interests include theoretical statistics and computer-intensive methods.
Rauf Ahmad is Associate Professor at the Department of Statistics, Uppsala University. He did his Ph.D. at Göttingen University, Germany. Before joining Uppsala University, he worked at the Division of Mathematical Statistics, Department of Mathematics, Linköping University, and at Biometry Division, Swedish University of Agricultural Sciences, Uppsala. He has taught Statistics to undergraduate and graduate students since 1995. His research interests include high-dimensional inference, mathematical statistics, and U-statistics.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 2,27 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 2,27 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 47441984
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 47441984-n
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condizione: new. Paperback. Bayesian Inference: Theory, Methods, Computations provides a comprehensive coverage of the fundamentals of Bayesian inference from all important perspectives, namely theory, methods and computations.All theoretical results are presented as formal theorems, corollaries, lemmas etc., furnished with detailed proofs. The theoretical ideas are explained in simple and easily comprehensible forms, supplemented with several examples. A clear reasoning on the validity, usefulness, and pragmatic approach of the Bayesian methods is provided. A large number of examples and exercises, and solutions to all exercises, are provided to help students understand the concepts through ample practice. The book is primarily aimed at first or second semester master students, where parts of the book can also be used at Ph.D. level or by research community at large. The emphasis is on exact cases. However, to gain further insight into the core concepts, an entire chapter is dedicated to computer intensive techniques. Selected chapters and sections of the book can be used for a one-semester course on Bayesian statistics.Key Features:Explains basic ideas of Bayesian statistical inference in an easily comprehensible formIllustrates main ideas through sketches and plotsContains large number of examples and exercisesProvides solutions to all exercisesIncludes R codesSilvelyn Zwanzig is a Professor for Mathematical Statistics at Uppsala University. She studied Mathematics at the Humboldt University of Berlin. Before coming to Sweden, she was Assistant Professor at the University of Hamburg in Germany. She received her Ph.D. in Mathematics at the Academy of Sciences of the GDR. She has taught Statistics to undergraduate and graduate students since 1991. Her research interests include theoretical statistics and computer-intensive methods.Rauf Ahmad is Associate Professor at the Department of Statistics, Uppsala University. He did his Ph.D. at the University of Goettingen, Germany. Before joining Uppsala University, he worked at the Division of Mathematical Statistics, Department of Mathematics, Linkoeping University, and at Biometry Division, Swedish University of Agricultural Sciences, Uppsala. He has taught Statistics to undergraduate and graduate students since 1995. His research interests include high-dimensional inference, mathematical statistics, and U-statistics. This book provides a comprehensive coverage of the fundamentals of Bayesian inference from all important perspectives, namely theory, methods and computations. All theoretical results are presented as formal theorems, corollaries, lemmas etc., furnished with detailed proofs. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781032118093
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 397636339
Quantità: 3 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26398773548
Quantità: 4 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781032118093_new
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 640. Codice articolo B9781032118093
Quantità: 1 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-GRD-9781032118093
Quantità: 1 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781032118093
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781032118093
Quantità: Più di 20 disponibili