Emerging technologies generate data sets of increased size and complexity that require new or updated statistical inferential methods and scalable, reproducible software. These data sets often involve measurements of a continuous underlying process, and benefit from a functional data perspective. Functional Data Analysis with R presents many ideas for handling functional data including dimension reduction techniques, smoothing, functional regression, structured decompositions of curves, and clustering. The idea is for the reader to be able to immediately reproduce the results in the book, implement these methods, and potentially design new methods and software that may be inspired by these approaches.
Features:
Functional Data Analysis with R is primarily aimed at undergraduate, master's and PhD students, as well as data scientists and researchers working on functional data analysis. The book can be read at different levels and combines state-of-the-art software, methods, and inference. It can be used for self-learning, teaching, and research, and will particularly appeal to anyone who is interested in practical methods for hands-on, problem-forward functional data analysis. The reader should have some basic coding experience, but expertise in R is not required.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Ciprian M. Crainiceanu is Professor of Biostatistics at Johns Hopkins University working on wearable and implantable technology (WIT), signal processing, and clinical neuroimaging. He has extensive experience in mixed effects modeling, semiparametric regression, and functional data analysis with application to data generated by emerging technologies.
Jeff Goldsmith is Associate Dean for Data Science and Associate Professor of Biostatistics at the Columbia University Mailman School of Public Health. His work in functional data analysis includes methodological and computational advances with applications in reaching kinematics, wearable devices, and neuroimaging.
Andrew Leroux is an Assistant Professor of Biostatistics and Informatics at the University of Colorado. His interests include the development of methodology in functional data analysis, particularly related to wearable technologies and intensive longitudinal data.
Erjia Cui is an Assistant Professor of Biostatistics at the University of Minnesota. His research interests include developing functional data analysis methods and semiparametric regression models with reproducible software, with applications in wearable devices, mobile health, and imaging.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,37 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiGRATIS per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEJUNE24-321265
Quantità: 1 disponibili
Da: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9781032244716
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 46772672-n
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781032244716_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Ciprian M. Crainiceanu is Professor of Biostatistics at Johns Hopkins University working on wearable and implantable technology (WIT), signal processing, and clinical neuroimaging. He has extensive experience in mixed effects modeling, semiparamet. Codice articolo 1109644591
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 398279964
Quantità: 3 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. New copy - Usually dispatched within 4 working days. 790. Codice articolo B9781032244716
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 46772672
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 46772672
Quantità: 1 disponibili
Da: SecondSale, Montgomery, IL, U.S.A.
Condizione: Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc. Codice articolo 00084717920
Quantità: 1 disponibili