Articoli correlati a Tidy Finance with Python

Tidy Finance with Python - Rilegato

 
9781032684291: Tidy Finance with Python

Sinossi

This textbook shows how to bring theoretical concepts from finance and econometrics to the data. Focusing on coding and data analysis with Python, we show how to conduct research in empirical finance from scratch. We start by introducing the concepts of tidy data and coding principles using pandas, numpy, and plotnine. Code is provided to prepare common open-source and proprietary financial data sources (CRSP, Compustat, Mergent FISD, TRACE) and organize them in a database. We reuse these data in all the subsequent chapters, which we keep as self-contained as possible. The empirical applications range from key concepts of empirical asset pricing (beta estimation, portfolio sorts, performance analysis, Fama-French factors) to modeling and machine learning applications (fixed effects estimation, clustering standard errors, difference-in-difference estimators, ridge regression, Lasso, Elastic net, random forests, neural networks) and portfolio optimization techniques.

Key Features:

  • Self-contained chapters on the most important applications and methodologies in finance, which can easily be used for the reader’s research or as a reference for courses on empirical finance.
  • Each chapter is reproducible in the sense that the reader can replicate every single figure, table, or number by simply copying and pasting the code we provide.
  • A full-fledged introduction to machine learning with scikit-learn based on tidy principles to show how factor selection and option pricing can benefit from Machine Learning methods.
  • We show how to retrieve and prepare the most important datasets financial economics: CRSP and Compustat, including detailed explanations of the most relevant data characteristics.
  • Each chapter provides exercises based on established lectures and classes which are designed to help students to dig deeper. The exercises can be used for self-studying or as a source of inspiration for teaching exercises.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Christoph Frey is a Quantitative Researcher and Portfolio Manager at a family office in Hamburg and a Research Fellow at the Centre for Financial Econometrics, Asset Markets and Macroeconomic Policy at Lancaster University. Prior to this, he was the leading quantitative researcher for systematic multi-asset strategies at Berenberg Bank and worked as an Assistant Professor at the Erasmus Universiteit Rotterdam. Christoph published research on Bayesian Econometrics and specializes in financial econometrics and portfolio optimization problems.

Christoph Scheuch is the Head of Artificial Intelligence at the social trading platform wikifolio.com. He is responsible for researching, designing, and prototyping of cutting-edge AI-driven products using R and Python. Before his focus on AI, he was responsible for product management and business intelligence at wikifolio.com and an external lecturer at the Vienna University of Economics and Business, where he taught finance students how to manage empirical projects.

Stefan Voigt is an Assistant Professor of Finance at the Department of Economics at the University in Copenhagen and a research fellow at the Danish Finance Institute. His research focuses on blockchain technology, high-frequency trading, and financial econometrics. Stefan's research has been published in the leading finance and econometrics journals and he received the Danish Finance Institute Teaching Award 2022 for his courses for students and practitioners on empirical finance based on Tidy Finance.

Patrick Weiss is an Assistant Professor of Finance at Reykjavik University and an external lecturer at the Vienna University of Economics and Business. His research activity centers around the intersection of empirical asset pricing and corporate finance, with his research appearing in leading journals in financial economics. Patrick is especially passionate about empirical asset pricing and strives to understand the impact of methodological uncertainty on research outcomes.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 2,27 per la spedizione in U.S.A.

Destinazione, tempi e costi

EUR 7,44 per la spedizione da Regno Unito a U.S.A.

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781032676418: Tidy Finance with Python

Edizione in evidenza

ISBN 10:  1032676418 ISBN 13:  9781032676418
Casa editrice: Chapman and Hall/CRC, 2024
Brossura

Risultati della ricerca per Tidy Finance with Python

Foto dell'editore

Scheuch, Christoph; Voigt, Stefan; Frey, Christoph; Weiss, Patrick
Editore: Chapman and Hall/CRC, 2024
ISBN 10: 1032684291 ISBN 13: 9781032684291
Nuovo Rilegato

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 398243457

Contatta il venditore

Compra nuovo

EUR 214,49
Convertire valuta
Spese di spedizione: EUR 7,44
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Frey, Christoph; Scheuch, Christoph; Voigt, Stefan; Weiss, Patrick
Editore: Chapman and Hall/CRC, 2024
ISBN 10: 1032684291 ISBN 13: 9781032684291
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 47468267-n

Contatta il venditore

Compra nuovo

EUR 219,72
Convertire valuta
Spese di spedizione: EUR 2,27
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Christoph Frey
Editore: Taylor & Francis Ltd, 2024
ISBN 10: 1032684291 ISBN 13: 9781032684291
Nuovo Rilegato

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. This textbook shows how to bring theoretical concepts from finance and econometrics to the data. Focusing on coding and data analysis with Python, we show how to conduct research in empirical finance from scratch. We start by introducing the concepts of tidy data and coding principles using pandas, numpy, and plotnine. Code is provided to prepare common open-source and proprietary financial data sources (CRSP, Compustat, Mergent FISD, TRACE) and organize them in a database. We reuse these data in all the subsequent chapters, which we keep as self-contained as possible. The empirical applications range from key concepts of empirical asset pricing (beta estimation, portfolio sorts, performance analysis, Fama-French factors) to modeling and machine learning applications (fixed effects estimation, clustering standard errors, difference-in-difference estimators, ridge regression, Lasso, Elastic net, random forests, neural networks) and portfolio optimization techniques.Key Features:Self-contained chapters on the most important applications and methodologies in finance, which can easily be used for the readers research or as a reference for courses on empirical finance.Each chapter is reproducible in the sense that the reader can replicate every single figure, table, or number by simply copying and pasting the code we provide.A full-fledged introduction to machine learning with scikit-learn based on tidy principles to show how factor selection and option pricing can benefit from Machine Learning methods.We show how to retrieve and prepare the most important datasets financial economics: CRSP and Compustat, including detailed explanations of the most relevant data characteristics.Each chapter provides exercises based on established lectures and classes which are designed to help students to dig deeper. The exercises can be used for self-studying or as a source of inspiration for teaching exercises. This textbook shows how to bring theoretical concepts from finance and econometrics to the data. Focusing on coding and data analysis with Python, we show how to conduct research in empirical finance from scratch. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781032684291

Contatta il venditore

Compra nuovo

EUR 222,06
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Christoph Scheuch
ISBN 10: 1032684291 ISBN 13: 9781032684291
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook shows how to bring theoretical concepts from finance and econometrics to the data. Focusing on coding and data analysis with Python, we show how to conduct research in empirical finance from scratch. We start by introducing the concepts of tidy data and coding principles using pandas, numpy, and plotnine. Code is provided to prepare common open-source and proprietary financial data sources (CRSP, Compustat, Mergent FISD, TRACE) and organize them in a database. We reuse these data in all the subsequent chapters, which we keep as self-contained as possible. The empirical applications range from key concepts of empirical asset pricing (beta estimation, portfolio sorts, performance analysis, Fama-French factors) to modeling and machine learning applications (fixed effects estimation, clustering standard errors, difference-in-difference estimators, ridge regression, Lasso, Elastic net, random forests, neural networks) and portfolio optimization techniques.Key Features:Self-contained chapters on the most important applications and methodologies in finance, which can easily be used for the reader's research or as a reference for courses on empirical finance.Each chapter is reproducible in the sense that the reader can replicate every single figure, table, or number by simply copying and pasting the code we provide.A full-fledged introduction to machine learning with scikit-learn based on tidy principles to show how factor selection and option pricing can benefit from Machine Learning methods.We show how to retrieve and prepare the most important datasets financial economics: CRSP and Compustat, including detailed explanations of the most relevant data characteristics.Each chapter provides exercises based on established lectures and classes which are designed to help students to dig deeper. The exercises can be used for self-studying or as a source of inspiration for teaching exercises. 262 pp. Englisch. Codice articolo 9781032684291

Contatta il venditore

Compra nuovo

EUR 204,80
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Scheuch, Christoph; Voigt, Stefan; Frey, Christoph; Weiss, Patrick
Editore: Chapman and Hall/CRC, 2024
ISBN 10: 1032684291 ISBN 13: 9781032684291
Nuovo Rilegato

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26399182174

Contatta il venditore

Compra nuovo

EUR 225,50
Convertire valuta
Spese di spedizione: EUR 3,43
In U.S.A.
Destinazione, tempi e costi

Quantità: 3 disponibili

Aggiungi al carrello

Foto dell'editore

Frey, Christoph; Scheuch, Christoph; Voigt, Stefan; Weiss, Patrick
Editore: Chapman and Hall/CRC, 2024
ISBN 10: 1032684291 ISBN 13: 9781032684291
Antico o usato Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 47468267

Contatta il venditore

Compra usato

EUR 230,97
Convertire valuta
Spese di spedizione: EUR 2,27
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Christoph Scheuch|Stefan Voigt|Patrick Weiss (Reykjavík University, Iceland)|Christoph Frey (Pinechip Capital, Germany)
Editore: CRC Press, 2024
ISBN 10: 1032684291 ISBN 13: 9781032684291
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Christoph Frey is a Quantitative Researcher and Portfolio Manager at a family office in Hamburg and a Research Fellow at the Centre for Financial Econometrics, Asset Markets and Macroeconomic Policy at Lancaster University. Prior to this, he was t. Codice articolo 1346598893

Contatta il venditore

Compra nuovo

EUR 184,46
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Scheuch, Christoph; Voigt, Stefan; Frey, Christoph; Weiss, Patrick
Editore: Chapman and Hall/CRC, 2024
ISBN 10: 1032684291 ISBN 13: 9781032684291
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781032684291_new

Contatta il venditore

Compra nuovo

EUR 223,78
Convertire valuta
Spese di spedizione: EUR 13,72
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Frey, Christoph; Scheuch, Christoph; Voigt, Stefan; Weiss, Patrick
Editore: Chapman and Hall/CRC, 2024
ISBN 10: 1032684291 ISBN 13: 9781032684291
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 47468267-n

Contatta il venditore

Compra nuovo

EUR 221,45
Convertire valuta
Spese di spedizione: EUR 17,17
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Christoph Scheuch
Editore: CRC Press, 2024
ISBN 10: 1032684291 ISBN 13: 9781032684291
Nuovo Rilegato
Print on Demand

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

HRD. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L1-9781032684291

Contatta il venditore

Compra nuovo

EUR 234,20
Convertire valuta
Spese di spedizione: EUR 5,75
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 8 copie di questo libro

Vedi tutti i risultati per questo libro