Quadratic Irrationals: An Introduction to Classical Number Theory gives a unified treatment of the classical theory of quadratic irrationals. Presenting the material in a modern and elementary algebraic setting, the author focuses on equivalence, continued fractions, quadratic characters, quadratic orders, binary quadratic forms, and class groups.
The book highlights the connection between Gauss’s theory of binary forms and the arithmetic of quadratic orders. It collects essential results of the theory that have previously been difficult to access and scattered in the literature, including binary quadratic Diophantine equations and explicit continued fractions, biquadratic class group characters, the divisibility of class numbers by 16, F. Mertens’ proof of Gauss’s duplication theorem, and a theory of binary quadratic forms that departs from the restriction to fundamental discriminants. The book also proves Dirichlet’s theorem on primes in arithmetic progressions, covers Dirichlet’s class number formula, and shows that every primitive binary quadratic form represents infinitely many primes. The necessary fundamentals on algebra and elementary number theory are given in an appendix.
Research on number theory has produced a wealth of interesting and beautiful results yet topics are strewn throughout the literature, the notation is far from being standardized, and a unifying approach to the different aspects is lacking. Covering both classical and recent results, this book unifies the theory of continued fractions, quadratic orders, binary quadratic forms, and class groups based on the concept of a quadratic irrational.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Franz Halter-Koch retired as a professor of mathematics from the University of Graz in 2004. A member of the Austrian Academy of Science, Dr. Halter-Koch is the author/coauthor of roughly 150 scientific articles, author of Ideal Systems: An Introduction to Multiplicative Ideal Theory, and coauthor of Non-Unique Factorizations: Algebraic, Combinatorial and Analytic Theory. His research focuses on elementary and algebraic number theory, non-unique factorizations, and abstract multiplicative ideal theory.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,36 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 10,36 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 409241095
Quantità: 3 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 48138298
Quantità: 10 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 48138298
Quantità: 10 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 432 pages. 10.00x7.00x10.00 inches. In Stock. Codice articolo __1032919973
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26403913176
Quantità: 3 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 453. Codice articolo B9781032919973
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18403913170
Quantità: 3 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 48138298-n
Quantità: 10 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 48138298-n
Quantità: 10 disponibili