Multivariate Generalized Linear Mixed Models Using R presents robust and methodologically sound models for analyzing large and complex data sets, enabling readers to answer increasingly complex research questions. The book applies the principles of modeling to longitudinal data from panel and related studies via the Sabre software package in R.
A Unified Framework for a Broad Class of Models The authors first discuss members of the family of generalized linear models, gradually adding complexity to the modeling framework by incorporating random effects. After reviewing the generalized linear model notation, they illustrate a range of random effects models, including three-level, multivariate, endpoint, event history, and state dependence models. They estimate the multivariate generalized linear mixed models (MGLMMs) using either standard or adaptive Gaussian quadrature. The authors also compare two-level fixed and random effects linear models. The appendices contain additional information on quadrature, model estimation, and endogenous variables, along with SabreR commands and examples.
Improve Your Longitudinal StudyIn medical and social science research, MGLMMs help disentangle state dependence from incidental parameters. Focusing on these sophisticated data analysis techniques, this book explains the statistical theory and modeling involved in longitudinal studies. Many examples throughout the text illustrate the analysis of real-world data sets. Exercises, solutions, and other material are available on a supporting website.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Damon M. Berridge is a senior lecturer in the Department of Mathematics and Statistics at Lancaster University. Dr. Berridge has nearly 20 years of experience as a statistical consultant. His research focuses on the modeling of binary and ordinal recurrent events through random effects models, with application in medical and social statistics.
Robert Crouchley is a professor of applied statistics and director of the Centre for e-Science at Lancaster University. His research interests involve the development of statistical methods and software for causal inference in nonexperimental data. These methods include models for errors in variables, missing data, heterogeneity, state dependence, nonstationarity, event history data, and selection effects.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 16,97 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 10,25 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 409284001
Quantità: 3 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 48140259
Quantità: 10 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 304 pages. 9.18x6.12x0.98 inches. In Stock. Codice articolo __103292280X
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st edition NO-PA16APR2015-KAP. Codice articolo 26403870334
Quantità: 3 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 48140259
Quantità: 10 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 453. Codice articolo B9781032922805
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18403870324
Quantità: 3 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 48140259-n
Quantità: 10 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 48140259-n
Quantità: 10 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
paperback. Condizione: New. New. book. Codice articolo ERICA829103292280X6
Quantità: 1 disponibili