<p>This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. It presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis.</p>
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
<p><b>Jiming Jiang</b> is Professor of Statistics and a former Director of Statistical Laboratory at the University of California, Davis. He is a prominent researcher in the fields of mixed effects models, small area estimation, model selection, and statistical genetics. He is the author of <i>Large Sample Techniques for Statistics</i> (Springer 2010), <i>Robust Mixed Model Analysis</i> (2019), <i>Asymptotic Analysis of Mixed Effects Models: Theory, Applications, and Open Problems </i>(2017), and<i> The Fence Methods </i>(with T. Nguyen, 2016). He has been editorial board member of <i>The Annals of Statistics</i> and <i>Journal of the American Statistical Association</i>, among others. He is a Fellow of the American Association for the Advancement of Science, the American Statistical Association, and the Institute of Mathematical Statistics; an elected member of the International Statistical Institute; and a Yangtze River Scholar (Chaired Professor, 2017-2020).</p><p><b>Thuan Nguyen</b> is Associate Professor of Biostatistics in the School of Public Health at Oregon Health & Science University, where she teaches and advises graduate students. She is an active researcher in the field of biostatistics, specializing in the analysis of longitudinal data and statistical genetics, as well as small area estimation. She is the coauthor of <i>The Fence Methods</i> (with J. Jiang 2016).</p><br><br>
<p>Now in its second edition, this book covers two major classes of mixed effects models—linear mixed models and generalized linear mixed models—and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. It offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it discusses the latest developments and methods in the field, incorporating relevant updates since publication of the first edition. These include advances in high-dimensional linear mixed models in genome-wide association studies (GWAS), advances in inference about generalized linear mixed models with crossed random effects, new methods in mixed model prediction, mixed model selection, and mixed model diagnostics.</p>This book is suitable for students, researchers, and practitioners who are interested in using mixed models for statistical data analysis with public health applications. It is best for graduate courses in statistics, or for those who have taken a first course in mathematical statistics, are familiar with using computers for data analysis, and have a foundational background in calculus and linear algebra.<br><p></p>
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 12,31 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Books From California, Simi Valley, CA, U.S.A.
hardcover. Condizione: Very Good. Codice articolo mon0003589823
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Features exercises and real examples throughout, to ensure retention of informationOffers an up-to-date account of theory and methods in the analysis of these models as well as their applications in various fieldsProvides a comprehensive co. Codice articolo 416589807
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 43435292-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781071612811_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Now in its second edition, this book covers two major classes of mixed effects models-linear mixed models and generalized linear mixed models-and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. It offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it discusses the latest developments and methods in the field, incorporating relevant updates since publication of the first edition. These include advances in high-dimensional linear mixed models in genome-wide association studies (GWAS), advances in inference about generalized linear mixed models with crossed random effects, new methods in mixed model prediction, mixed model selection, and mixed model diagnostics. This book is suitable for students, researchers, and practitioners who are interested in using mixed models for statistical data analysis with public health applications. It is best for graduate courses in statistics, or for those who have taken a first course in mathematical statistics, are familiar with using computers for data analysis, and have a foundational background in calculus and linear algebra. 360 pp. Englisch. Codice articolo 9781071612811
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Now in its second edition, this book covers two major classes of mixed effects models¿linear mixed models and generalized linear mixed models¿and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. It offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it discusses the latest developments and methods in the field, incorporating relevant updates since publication of the first edition. These include advances in high-dimensional linear mixed models in genome-wide association studies (GWAS), advances in inference about generalized linear mixed models with crossed random effects, new methods in mixed model prediction, mixed model selection, and mixed model diagnostics.This book is suitable for students, researchers, and practitioners who are interested in using mixed models for statistical data analysis with public health applications. It is best for graduate courses in statistics, or for those who have taken a first course in mathematical statistics, are familiar with using computers for data analysis, and have a foundational background in calculus and linear algebra.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 360 pp. Englisch. Codice articolo 9781071612811
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 43435292-n
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Now in its second edition, this book covers two major classes of mixed effects models-linear mixed models and generalized linear mixed models-and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. It offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it discusses the latest developments and methods in the field, incorporating relevant updates since publication of the first edition. These include advances in high-dimensional linear mixed models in genome-wide association studies (GWAS), advances in inference about generalized linear mixed models with crossed random effects, new methods in mixed model prediction, mixed model selection, and mixed model diagnostics. This book is suitable for students, researchers, and practitioners who are interested in using mixed models for statistical data analysis with public health applications. It is best for graduate courses in statistics, or for those who have taken a first course in mathematical statistics, are familiar with using computers for data analysis, and have a foundational background in calculus and linear algebra. Codice articolo 9781071612811
Quantità: 1 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Hardcover. Condizione: New. New. book. Codice articolo ERICA77310716128166
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Hardback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 184. Codice articolo C9781071612811
Quantità: Più di 20 disponibili