The amount of data being generated today is staggering and growing. Apache Spark has emerged as the de facto tool to analyze big data and is now a critical part of the data science toolbox. Updated for Spark 3.0, this practical guide brings together Spark, statistical methods, and real-world datasets to teach you how to approach analytics problems using PySpark, Spark's Python API, and other best practices in Spark programming.
Data scientists Akash Tandon, Sandy Ryza, Uri Laserson, Sean Owen, and Josh Wills offer an introduction to the Spark ecosystem, then dive into patterns that apply common techniques-including classification, clustering, collaborative filtering, and anomaly detection, to fields such as genomics, security, and finance. This updated edition also covers NLP and image processing.
If you have a basic understanding of machine learning and statistics and you program in Python, this book will get you started with large-scale data analysis.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Akash Tandon is an independent consultant and experienced full-stack data engineer. Previously, he was a senior data engineer at Atlan, where he built software for enterprise data science teams. In another life, he had worked on data science projects for governments, and built risk assessment tools at a FinTech startup. As a student, he wrote open source software with the R project for statistical computing and Google. In his free time, he researches things for no good reason.
Sandy Ryza is software engineer at Elementl. Previously, he developed algorithms for public transit at Remix and was a senior data scientist at Cloudera and Clover Health. He is an Apache Spark committer, Apache Hadoop PMC member, and founder of the Time Series for Spark project.
Uri Laserson is founder & CTO of Patch Biosciences. Previously, he worked on big data and genomics at Cloudera.
Sean Owen is a principal solutions architect focusing on machine learning and data science at Databricks. He is an Apache Spark committer and PMC member, and co-author Advanced Analytics with Spark. Previously, he was director of Data Science at Cloudera and an engineer at Google.
Josh Wills is an independent data science and engineering consultant, the former head of data engineering at Slack and data science at Cloudera, and wrote a tweet about data scientists once.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 10,48 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 1,90 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781098103651
Quantità: 2 disponibili
Da: WorldofBooks, Goring-By-Sea, WS, Regno Unito
Paperback. Condizione: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Codice articolo GOR014304176
Quantità: 1 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781098103651
Quantità: 2 disponibili
Da: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9781098103651
Quantità: 1 disponibili
Da: Rarewaves USA United, OSWEGO, IL, U.S.A.
Paperback. Condizione: New. The amount of data being generated today is staggering--and growing. Apache Spark has emerged as the de facto tool to analyze big data and is now a critical part of the data science toolbox. Updated for Spark 3.0, this practical guide brings together Spark, statistical methods, and real-world datasets to teach you how to approach analytics problems using PySpark, Spark's Python API, and other best practices in Spark programming.Data scientists Akash Tandon, Sandy Ryza, Uri Laserson, Sean Owen, and Josh Wills offer an introduction to the Spark ecosystem, then dive into patterns that apply common techniques--including classification, clustering, collaborative filtering, and anomaly detection--to fields such as genomics, security, and finance. This updated edition also covers NLP and image processing.If you have a basic understanding of machine learning and statistics and you program in Python, this book will get you started with large-scale data analysis.Familiarize yourself with Spark's programming model and ecosystemLearn general approaches in data scienceExamine complete implementations that analyze large public datasetsDiscover which machine learning tools make sense for particular problemsExplore code that can be adapted to many uses. Codice articolo LU-9781098103651
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 43686480-n
Quantità: 5 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. 2022. Paperback. . . . . . Codice articolo V9781098103651
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 4 working days. 209. Codice articolo B9781098103651
Quantità: 3 disponibili
Da: Rarewaves.com UK, London, Regno Unito
Paperback. Condizione: New. The amount of data being generated today is staggering--and growing. Apache Spark has emerged as the de facto tool to analyze big data and is now a critical part of the data science toolbox. Updated for Spark 3.0, this practical guide brings together Spark, statistical methods, and real-world datasets to teach you how to approach analytics problems using PySpark, Spark's Python API, and other best practices in Spark programming.Data scientists Akash Tandon, Sandy Ryza, Uri Laserson, Sean Owen, and Josh Wills offer an introduction to the Spark ecosystem, then dive into patterns that apply common techniques--including classification, clustering, collaborative filtering, and anomaly detection--to fields such as genomics, security, and finance. This updated edition also covers NLP and image processing.If you have a basic understanding of machine learning and statistics and you program in Python, this book will get you started with large-scale data analysis.Familiarize yourself with Spark's programming model and ecosystemLearn general approaches in data scienceExamine complete implementations that analyze large public datasetsDiscover which machine learning tools make sense for particular problemsExplore code that can be adapted to many uses. Codice articolo LU-9781098103651
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 43686480-n
Quantità: 4 disponibili