Take a data-first and use-case-driven approach with Low-Code AI to understand machine learning and deep learning concepts. This hands-on guide presents three problem-focused ways to learn no-code ML using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. In each case, you'll learn key ML concepts by using real-world datasets with realistic problems.
Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data; feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications.
You'll learn how to:
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Da: BooksRun, Philadelphia, PA, U.S.A.
Paperback. Condizione: Very Good. 1. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Codice articolo 1098146824-8-1
Quantità: 1 disponibili
Da: HPB-Red, Dallas, TX, U.S.A.
paperback. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_426187623
Quantità: 1 disponibili
Da: ThriftBooks-Dallas, Dallas, TX, U.S.A.
Paperback. Condizione: Fair. No Jacket. Former library book; Readable copy. Pages may have considerable notes/highlighting. ~ ThriftBooks: Read More, Spend Less. Codice articolo G1098146824I5N10
Quantità: 1 disponibili
Da: Lakeside Books, Benton Harbor, MI, U.S.A.
Condizione: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books! Codice articolo OTF-S-9781098146825
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 45802689-n
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781098146825
Quantità: 15 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 45802689
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo WO-9781098146825
Quantità: 15 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781098146825
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. Take a data-first and use-case driven approach to understanding machine learning and deep learning concepts with Low-Code AI. This hands-on guide presents three problem-focused ways to learn ML: no code using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. You'll learn key ML concepts by using real-world datasets with realistic problems. Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data, feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications. You'll learn how to: Distinguish structured and unstructured data and understand the different challenges they present Visualize and analyze data Preprocess data for input into a machine learning model Differentiate between the regression and classification supervised learning models Compare different machine learning model types and architectures, from no code to low-code to custom training Design, implement, and tune ML models Export data to a GitHub repository for data management and governance" This hands-on guide presents three problem-focused ways to learn ML: no code using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. You'll learn key ML concepts by using real-world datasets with realistic problems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781098146825
Quantità: 1 disponibili