Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Tim Roughgarden is a Professor of Computer Science at Columbia University. For his research, he has been awarded the ACM Grace Murray Hopper Award, the Presidential Early Career Award for Scientists and Engineers (PECASE), the Kalai Prize in Computer Science and Game Theory, the Social Choice and Welfare Prize, the Mathematical Programming Society's Tucker Prize, and the EATCS-SIGACT Gödel Prize. He was an invited speaker at the 2006 International Congress of Mathematicians, the Shapley Lecturer at the 2008 World Congress of the Game Theory Society, and a Guggenheim Fellow in 2017. His other books include Twenty Lectures on Algorithmic Game Theory (2016) and the Algorithms Illuminated book series (2017-2020).
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: thebookforest.com, San Rafael, CA, U.S.A.
Condizione: New. Supporting Bay Area Friends of the Library since 2010. Well packaged and promptly shipped. Codice articolo BAY_19_SH_040686
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2317530285810
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 41456667-n
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781108494311
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 41456667
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Hardcover. Condizione: new. Hardcover. There are no silver bullets in algorithm design, and no single algorithmic idea is powerful and flexible enough to solve every computational problem. Nor are there silver bullets in algorithm analysis, as the most enlightening method for analyzing an algorithm often depends on the problem and the application. However, typical algorithms courses rely almost entirely on a single analysis framework, that of worst-case analysis, wherein an algorithm is assessed by its worst performance on any input of a given size. The purpose of this book is to popularize several alternatives to worst-case analysis and their most notable algorithmic applications, from clustering to linear programming to neural network training. Forty leading researchers have contributed introductions to different facets of this field, emphasizing the most important models and results, many of which can be taught in lectures to beginning graduate students in theoretical computer science and machine learning. Understanding when and why algorithms work is a fundamental challenge. For problems ranging from clustering to linear programming to neural networks there are significant gaps between empirical performance and prediction based on traditional worst-case analysis. The book introduces exciting new methods for assessing algorithm performance. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781108494311
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 686 pages. 10.00x7.00x1.55 inches. In Stock. This item is printed on demand. Codice articolo __1108494315
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 41456667-n
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 41456667
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26377003293
Quantità: 4 disponibili