Now in its second edition, this accessible text presents a unified Bayesian treatment of state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models. The book focuses on discrete-time state space models and carefully introduces fundamental aspects related to optimal filtering and smoothing. In particular, it covers a range of efficient non-linear Gaussian filtering and smoothing algorithms, as well as Monte Carlo-based algorithms. This updated edition features new chapters on constructing state space models of practical systems, the discretization of continuous-time state space models, Gaussian filtering by enabling approximations, posterior linearization filtering, and the corresponding smoothers. Coverage of key topics is expanded, including extended Kalman filtering and smoothing, and parameter estimation. The book's practical, algorithmic approach assumes only modest mathematical prerequisites, suitable for graduate and advanced undergraduate students. Many examples are included, with Matlab and Python code available online, enabling readers to implement algorithms in their own projects.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Simo Särkkä is Associate Professor in the Department of Electrical Engineering and Automation at Aalto University, Finland. His research interests center on state estimation and stochastic modeling, and he has authored two books (2013 and 2019) on these topics. He is Fellow of ELLIS, Senior Member of IEEE, a recipient of multiple paper awards, and he has been Chair of MLSP and FUSION conferences.
Lennart Svensson is Professor in the Department of Electrical Engineering at Chalmers University of Technology, Gothenberg. His research focuses on nonlinear filtering, deep learning, and tracking in particular. He has organized a massive open online course on multiple object tracking, and received paper awards at the International Conference on Information Fusion in 2009, 2010, 2017, 2019, and 2021.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 12,38 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 8,08 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Books From California, Simi Valley, CA, U.S.A.
paperback. Condizione: Very Good. Codice articolo mon0003808575
Quantità: 1 disponibili
Da: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9781108926645
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 26395313364
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18395313374
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 401063691
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781108926645
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 2nd edition. 430 pages. 9.00x6.00x0.89 inches. In Stock. Codice articolo __1108926649
Quantità: 1 disponibili
Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condizione: New. 2023. 2nd Edition. Paperback. . . . . . Codice articolo V9781108926645
Quantità: 2 disponibili
Da: BargainBookStores, Grand Rapids, MI, U.S.A.
Paperback or Softback. Condizione: New. Bayesian Filtering and Smoothing 1.28. Book. Codice articolo BBS-9781108926645
Quantità: 5 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781108926645_new
Quantità: 2 disponibili