Fundamentals of Strength: Principles, Experiment, and Applications of an Internal State Variable Constitutive Formulation - Rilegato

Follansbee, Paul S.

 
9781118413418: Fundamentals of Strength: Principles, Experiment, and Applications of an Internal State Variable Constitutive Formulation

Sinossi

Offers data, examples, and applications supporting the use of the mechanical threshold stress (MTS) model

Written by Paul S. Follansbee, an international authority in the field, this book explores the underlying theory, mechanistic basis, and implementation of the mechanical threshold stress (MTS) model. Readers are introduced to such key topics as mechanical testing, crystal structure, thermodynamics, dislocation motion, dislocation–obstacle interactions, hardening through dislocation accumulation, and deformation kinetics. The models described in this book support the emerging theme of Integrated Computational Materials Engineering (ICME) by offering a foundation for the bridge between length scales characterizing the mesoscale (mechanistic) and the macroscopic.

Fundamentals of Strength begins with a chapter that introduces various approaches to measuring the strength of metals. Next, it covers:

  • Structure and bonding
  • Contributions to strength
  • Dislocation–obstacle interactions
  • Constitutive law for metal deformation
  • Further MTS model developments
  • Data analysis: deriving MTS model parameters

The next group of chapters examines the application of the MTS model to copper and nickel, BCC metals and alloys, HCP metals and alloys, austenitic stainless steels, and heavily deformed metals. The final chapter offers suggestions for the continued development and application of the MTS model.

To help readers fully understand the application of the MTS model, the author presents two fictional materials along with extensive data sets. In addition, end-of-chapter exercises give readers the opportunity to apply the models themselves using a variety of data sets.

Appropriate for both students and materials researchers, Fundamentals of Strength goes beyond theory, offering readers a model that is fully supported with examples and applications.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

PAUL S. FOLLANSBEE, PhD, is a materials scientist and engineer with thirty-five years of experience at Los Alamos National Laboratory, Howmet Castings, General Electric Corporate Research and Development, and Pratt and Whitney Aircraft. He joined Saint Vincent College in 2008 as the James F. Will Professor of Engineering Sciences. His research centers on deformation modeling and constitutive behavior at low temperatures and high strain rates and the application of these models to materials processing and performance. Dr. Follansbee proposed and developed an internal state variable constitutive model, the mechanical threshold stress model, and has applied it to Cu, Ni, Ti-6Al-4V, and several other metals.

Dalla quarta di copertina

Offers data, examples, and applications supporting the use of the mechanical threshold stress (MTS) model

Written by Paul S. Follansbee, an international authority in the field, this book explores the underlying theory, mechanistic basis, and implementation of the mechanical threshold stress (MTS) model. Readers are introduced to such key topics as mechanical testing, crystal structure, thermodynamics, dislocation motion, dislocation–obstacle interactions, hardening through dislocation accumulation, and deformation kinetics. The models described in this book support the emerging theme of Integrated Computational Materials Engineering (ICME) by offering a foundation for the bridge between length scales characterizing the mesoscale (mechanistic) and the macroscopic.

Fundamentals of Strength begins with a chapter that introduces various approaches to measuring the strength of metals. Next, it covers:

  • Structure and bonding
  • Contributions to strength
  • Dislocation–obstacle interactions
  • Constitutive law for metal deformation
  • Further MTS model developments
  • Data analysis: deriving MTS model parameters

The next group of chapters examines the application of the MTS model to copper and nickel, BCC metals and alloys, HCP metals and alloys, austenitic stainless steels, and heavily deformed metals. The final chapter offers suggestions for the continued development and application of the MTS model.

To help readers fully understand the application of the MTS model, the author presents two fictional materials along with extensive data sets. In addition, end-of-chapter exercises give readers the opportunity to apply the models themselves using a variety of data sets.

Appropriate for both students and materials researchers, Fundamentals of Strength goes beyond theory, offering readers a model that is fully supported with examples and applications.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.