Articoli correlati a Learning in Energy-Efficient Neuromorphic Computing:...

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design - Rilegato

 
9781119507383: Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design

Sinossi

Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications 

This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities—and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g., deep learning), as well as hardware implementation of neural networks.

The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware.

  • Includes cross-layer survey of hardware accelerators for neuromorphic algorithms
  • Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency
  • Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities. 

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

NAN ZHENG, PhD, received a B. S. degree in Information Engineering from Shanghai Jiao Tong University, China, in 2011, and an M. S. and PhD in Electrical Engineering from the University of Michigan, Ann Arbor, USA, in 2014 and 2018, respectively. His research interests include low-power hardware architectures, algorithms and circuit techniques with an emphasis on machine-learning applications.

PINAKI MAZUMDER, PhD, is a professor in the Department of Electrical Engineering and Computer Science at The University of Michigan, USA. His research interests include CMOS VLSI design, semiconductor memory systems, CAD tools and circuit designs for emerging technologies including quantum MOS, spintronics, spoof plasmonics, and resonant tunneling devices.

Dalla quarta di copertina

Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications

This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities???and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g. deep learning), as well as hardware implementation of neural networks.

The book begins with an overview of neural networks followed by a discussion of algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy- efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware.

  • Includes a cross-layer survey of hardware accelerators for neuromorphic algorithms
  • Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency
  • Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices such as traditional memristors or diffusive memristors, for neuromorphic computing

Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing demands on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation of neural networks with powerful learning capabilities.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,07 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 17,07 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9781119507369: Learning in Energy–Efficient Neuromorphic Computing: Algorithm and Architecture Co–Design

Edizione in evidenza

ISBN 10:  1119507367 ISBN 13:  9781119507369
Brossura

Risultati della ricerca per Learning in Energy-Efficient Neuromorphic Computing:...

Immagini fornite dal venditore

Zheng, Nan; Mazumder, Pinaki
Editore: Wiley-IEEE Press, 2019
ISBN 10: 1119507383 ISBN 13: 9781119507383
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 30625702-n

Contatta il venditore

Compra nuovo

EUR 95,83
Convertire valuta
Spese di spedizione: EUR 17,07
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 6 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Nan Zheng|Pinaki Mazumder
Editore: John Wiley & Sons, 2019
ISBN 10: 1119507383 ISBN 13: 9781119507383
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. NAN ZHENG, PhD, received a B. S. degree in Information Engineering from Shanghai Jiao Tong University, China, in 2011, and an M. S. and PhD in Electrical Engineering from the University of Michigan, Ann Arbor, USA, in 2014 and 2018, respectively. His resear. Codice articolo 319279800

Contatta il venditore

Compra nuovo

EUR 117,07
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

N Zheng
Editore: Wiley, 2019
ISBN 10: 1119507383 ISBN 13: 9781119507383
Nuovo Rilegato

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo FW-9781119507383

Contatta il venditore

Compra nuovo

EUR 121,21
Convertire valuta
Spese di spedizione: EUR 6,10
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Zheng, Nan; Mazumder, Pinaki
Editore: Wiley-IEEE Press, 2019
ISBN 10: 1119507383 ISBN 13: 9781119507383
Antico o usato Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 30625702

Contatta il venditore

Compra usato

EUR 111,68
Convertire valuta
Spese di spedizione: EUR 17,07
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 6 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Zheng, Nan; Mazumder, Pinaki
Editore: Wiley-IEEE Press, 2019
ISBN 10: 1119507383 ISBN 13: 9781119507383
Antico o usato Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 30625702

Contatta il venditore

Compra usato

EUR 118,08
Convertire valuta
Spese di spedizione: EUR 17,40
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 13 disponibili

Aggiungi al carrello

Foto dell'editore

Zheng, Nan; Mazumder, Pinaki
Editore: Wiley-IEEE Press, 2019
ISBN 10: 1119507383 ISBN 13: 9781119507383
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781119507383_new

Contatta il venditore

Compra nuovo

EUR 125,54
Convertire valuta
Spese di spedizione: EUR 10,43
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

Nan Zheng
Editore: John Wiley and Sons Ltd, 2019
ISBN 10: 1119507383 ISBN 13: 9781119507383
Nuovo Rilegato

Da: THE SAINT BOOKSTORE, Southport, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardback. Condizione: New. New copy - Usually dispatched within 4 working days. 671. Codice articolo B9781119507383

Contatta il venditore

Compra nuovo

EUR 126,60
Convertire valuta
Spese di spedizione: EUR 11,44
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 10 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Zheng, Nan; Mazumder, Pinaki
Editore: Wiley-IEEE Press, 2019
ISBN 10: 1119507383 ISBN 13: 9781119507383
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 30625702-n

Contatta il venditore

Compra nuovo

EUR 121,20
Convertire valuta
Spese di spedizione: EUR 17,40
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 13 disponibili

Aggiungi al carrello

Foto dell'editore

Nan Zheng
Editore: John Wiley & Sons Inc, 2019
ISBN 10: 1119507383 ISBN 13: 9781119507383
Nuovo Rilegato

Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 2019. Hardcover. . . . . . Codice articolo V9781119507383

Contatta il venditore

Compra nuovo

EUR 137,47
Convertire valuta
Spese di spedizione: EUR 2,00
Da: Irlanda a: Italia
Destinazione, tempi e costi

Quantità: 15 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Nan Zheng, Pinaki Mazumder
ISBN 10: 1119507383 ISBN 13: 9781119507383
Nuovo Rilegato

Da: Rarewaves.com UK, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardback. Condizione: New. Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications  This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities-and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e.g., deep learning), as well as hardware implementation of neural networks. The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware. Includes cross-layer survey of hardware accelerators for neuromorphic algorithmsCovers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiencyFocuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities. Codice articolo LU-9781119507383

Contatta il venditore

Compra nuovo

EUR 145,93
Convertire valuta
Spese di spedizione: EUR 2,32
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Vedi altre 13 copie di questo libro

Vedi tutti i risultati per questo libro