Multiblock Data Fusion in Statistics and Machine Learning
Explore the advantages and shortcomings of various forms of multiblock analysis, and the relationships between them, with this expert guide
Arising out of fusion problems that exist in a variety of fields in the natural and life sciences, the methods available to fuse multiple data sets have expanded dramatically in recent years. Older methods, rooted in psychometrics and chemometrics, also exist.
Multiblock Data Fusion in Statistics and Machine Learning: Applications in the Natural and Life Sciences is a detailed overview of all relevant multiblock data analysis methods for fusing multiple data sets. It focuses on methods based on components and latent variables, including both well-known and lesser-known methods with potential applications in different types of problems.
Many of the included methods are illustrated by practical examples and are accompanied by a freely available R-package. The distinguished authors have created an accessible and useful guide to help readers fuse data, develop new data fusion models, discover how the involved algorithms and models work, and understand the advantages and shortcomings of various approaches.
This book includes:
Perfect for graduate students studying data analysis in the context of the natural and life sciences, including bioinformatics, sensometrics, and chemometrics, Multiblock Data Fusion in Statistics and Machine Learning: Applications in the Natural and Life Sciences is also an indispensable resource for developers and users of the results of multiblock methods.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Age K. Smilde is a Professor of Biosystems Data Analysis at the Swammerdam Institute for Life Sciences at the University of Amsterdam. He also holds a part-time position at the Department of Machine Intelligence of Simula Metropolitan Center for Digital Engineering in Oslo, Norway. His research interest is multiblock data analysis and its implementation in different fields of life sciences. He is currently the Editor-in-Chief of the Journal of Chemometrics.
Tormod Nęs is a Senior Scientist at Nofima, a food research institute in Norway. He is also currently employed as adjoint professor at the Department of Food Science, University of Copenhagen, Denmark and as extraordinary professor at University of Stellenbosch, South Africa. His main research interest is multivariate analysis with special emphasis on applications in sensory science and spectroscopy.
Kristian Hovde Liland is an Associate Professor with a top scientist scholarship in Data Science at the Norwegian University of Life Sciences and works in the areas of chemometrics, data analysis and machine learning. His main research is in linear prediction modelling, spectroscopy, and the transition between chemometrics and machine learning.
Explore the advantages and shortcomings of various forms of multiblock analysis, and the relationships between them, with this expert guide
Arising out of fusion problems that exist in a variety of fields in the natural and life sciences, the methods available to fuse multiple data sets have expanded dramatically in recent years. Older methods, rooted in psychometrics and chemometrics, also exist.
Multiblock Data Fusion in Statistics and Machine Learning: Applications in the Natural and Life Sciences is a detailed overview of all relevant multiblock data analysis methods for fusing multiple data sets. It focuses on methods based on components and latent variables, including both well-known and lesser-known methods with potential applications in different types of problems.
Many of the included methods are illustrated by practical examples and are accompanied by a freely available R-package. The distinguished authors have created an accessible and useful guide to help readers fuse data, develop new data fusion models, discover how the involved algorithms and models work, and understand the advantages and shortcomings of various approaches.
This book includes:
Perfect for graduate students studying data analysis in the context of the natural and life sciences, including bioinformatics, sensometrics, and chemometrics, Multiblock Data Fusion in Statistics and Machine Learning: Applications in the Natural and Life Sciences is also an indispensable resource for developers and users of the results of multiblock methods.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 17,90 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 8,10 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiDa: Studibuch, Stuttgart, Germania
hardcover. Condizione: Gut. 378 Seiten; 9781119600961.3 Gewicht in Gramm: 2. Codice articolo 622090
Quantitą: 1 disponibili
Da: Studibuch, Stuttgart, Germania
hardcover. Condizione: Wie neu. 416 Seiten; 9781119600961.1 Gewicht in Gramm: 2. Codice articolo 869851
Quantitą: 1 disponibili
Da: Speedyhen, London, Regno Unito
Condizione: NEW. Codice articolo NW9781119600961
Quantitą: 1 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
HRD. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo FW-9781119600961
Quantitą: 9 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 35148230-n
Quantitą: 11 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 35148230-n
Quantitą: 10 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 35148230
Quantitą: 11 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781119600961_new
Quantitą: 10 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 35148230
Quantitą: 11 disponibili
Da: moluna, Greven, Germania
Condizione: New. Age K. Smilde is a Professor of Biosystems Data Analysis at the Swammerdam Institute for Life Sciences at the University of Amsterdam. He also holds a part-time position at the Department of Machine Intelligence of Simula Metropolitan Center for Digital Eng. Codice articolo 497471670
Quantitą: 1 disponibili