Computation, Optimization, and Machine Learning in Seismology
The goal of computational seismology is to digitally simulate seismic waves, create subsurface models, and match these models with observations to identify subsurface rock properties. With recent advances in computing technology, including machine learning, it is now possible to automate matching procedures and use waveform inversion or optimization to create large-scale models.
Computation, Optimization, and Machine Learning in Seismology provides students with a detailed understanding of seismic wave theory, optimization theory, and how to use machine learning to interpret seismic data.
Volume highlights include:
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Subhashis Mallick, University of Wyoming, USA
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 35928994-n
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. A textbook applying fundamental seismology theories to the latest computational tools The goal of computational seismology is to digitally simulate seismic waves, create subsurface models, and match these models with observations to identify subsurface rock properties. With recent advances in computing technology, including machine learning, it is now possible to automate matching procedures and use waveform inversion or optimization to create large-scale models. Computation, Optimization, and Machine Learning in Seismology provides students with a detailed understanding of seismic wave theory, optimization theory, and how to use machine learning to interpret seismic data. Volume highlights include: Mathematical foundations and key equations for computational seismologyEssential theories, including wave propagation and elastic wave theoryProcessing, mapping, and interpretation of prestack dataModel-based optimization and artificial intelligence methodsApplications for earthquakes, exploration seismology, depth imaging, and multi-objective geophysics problemsExercises applying the main concepts of each chapter Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781119654469
Quantità: 1 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Shipped from UK. Established seller since 2000. Codice articolo FW-9781119654469
Quantità: 15 disponibili
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Codice articolo UJNM0ODHNF
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 35928994-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 35928994
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781119654469_new
Quantità: 1 disponibili
Da: Chiron Media, Wallingford, Regno Unito
paperback. Condizione: New. Codice articolo 6666-GRD-9781119654469
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 35928994
Quantità: Più di 20 disponibili
Da: Rarewaves.com USA, London, LONDO, Regno Unito
Paperback. Condizione: New. A textbook applying fundamental seismology theories to the latest computational tools The goal of computational seismology is to digitally simulate seismic waves, create subsurface models, and match these models with observations to identify subsurface rock properties. With recent advances in computing technology, including machine learning, it is now possible to automate matching procedures and use waveform inversion or optimization to create large-scale models. Computation, Optimization, and Machine Learning in Seismology provides students with a detailed understanding of seismic wave theory, optimization theory, and how to use machine learning to interpret seismic data. Volume highlights include: Mathematical foundations and key equations for computational seismologyEssential theories, including wave propagation and elastic wave theoryProcessing, mapping, and interpretation of prestack dataModel-based optimization and artificial intelligence methodsApplications for earthquakes, exploration seismology, depth imaging, and multi-objective geophysics problemsExercises applying the main concepts of each chapter. Codice articolo LU-9781119654469
Quantità: 11 disponibili