Most intrusion detection systems rely on signature matching of known malware or anomaly discrimination by data mining historical network traffic. This renders defended systems vulnerable to new or polymorphic code and deceptive attacks that do not trigger anomaly alarms. A lightweight, self-aware intrusion detection system (IDS) is essential for the security of government and commercial networks, especially mobile, ad-hoc networks (MANETs) with relatively limited processing power. This research proposes a host-based, anomaly discrimination IDS using operating system process parameters to measure the "health" of individual systems. Principal Component Analysis (PCA) is employed for feature set selection and dimensionality reduction, while Mahalanobis Distance (MD) and is used to classify legitimate and illegitimate activity. This combination of statistical methods provides an efficient computer operating process anomaly intrusion detection system (PAIDS) that maximizes detection rate and minimizes false positive rate, while updating its sense of "self" in near-real-time.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781288417391
Quantità: Più di 20 disponibili
Da: PBShop.store US, Wood Dale, IL, U.S.A.
PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781288417391
Quantità: Più di 20 disponibili
Da: PBShop.store UK, Fairford, GLOS, Regno Unito
PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781288417391
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781288417391_new
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Codice articolo C9781288417391
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 146. Codice articolo 26390601310
Quantità: 4 disponibili
Da: moluna, Greven, Germania
Condizione: New. KlappentextrnrnMost intrusion detection systems rely on signature matching of known malware or anomaly discrimination by data mining historical network traffic. This renders defended systems vulnerable to new or polymorphic code and deceptive at. Codice articolo 6562274
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 146. Codice articolo 390047105
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 146. Codice articolo 18390601300
Quantità: 4 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Neuware - Most intrusion detection systems rely on signature matching of known malware or anomaly discrimination by data mining historical network traffic. This renders defended systems vulnerable to new or polymorphic code and deceptive attacks that do not trigger anomaly alarms. A lightweight, self-aware intrusion detection system (IDS) is essential for the security of government and commercial networks, especially mobile, ad-hoc networks (MANETs) with relatively limited processing power. This research proposes a host-based, anomaly discrimination IDS using operating system process parameters to measure the 'health' of individual systems. Principal Component Analysis (PCA) is employed for feature set selection and dimensionality reduction, while Mahalanobis Distance (MD) and is used to classify legitimate and illegitimate activity. This combination of statistical methods provides an efficient computer operating process anomaly intrusion detection system (PAIDS) that maximizes detection rate and minimizes false positive rate, while updating its sense of 'self' in near-real-time. Codice articolo 9781288417391
Quantità: 2 disponibili