This book is a collection of articles studying various Steiner tree prob lems with applications in industries, such as the design of electronic cir cuits, computer networking, telecommunication, and perfect phylogeny. The Steiner tree problem was initiated in the Euclidean plane. Given a set of points in the Euclidean plane, the shortest network interconnect ing the points in the set is called the Steiner minimum tree. The Steiner minimum tree may contain some vertices which are not the given points. Those vertices are called Steiner points while the given points are called terminals. The shortest network for three terminals was first studied by Fermat (1601-1665). Fermat proposed the problem of finding a point to minimize the total distance from it to three terminals in the Euclidean plane. The direct generalization is to find a point to minimize the total distance from it to n terminals, which is still called the Fermat problem today. The Steiner minimum tree problem is an indirect generalization. Schreiber in 1986 found that this generalization (i.e., the Steiner mini mum tree) was first proposed by Gauss.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Foreword. Steiner Minimum Trees in Uniform Orientation Metrics; M. Brazil. Genetic Algorithm Approaches to Solve Various Steiner Tree Problems; G. Chakraborty. Neural Network Approaches to Solve Various Steiner Tree Problems; G. Chakraborty. Steiner Tree Problems in VLSI Layout Designs; Jung-Dong Cho. Polyhedral Approaches for the Steiner Tree Problem on Graphs; S. Chopra, Chih-Yang Tsai. The Perfect Phylogeny Problem; D. Fernández-Baca. Approximation Algorithms for the Steiner Tree Problems in Graphs; C. Gröpl, et al. A Proposed Experiment on Soap Film Solutions of Planar Euclidean Steiner Trees; F.K. Hwang. SteinLib: An Updated Library on Steiner Tree Problems in Graphs; T. Koch, et al. Steiner Tree Based Distributed Multicast Routing in Networks; R. Novak, et al. On Cost Allocation in Steiner Tree Networks; D. Skorin-Kapov. Steiner Trees and the Dynamic Quadratic Assignment Problem; J.M. Smith. Polynomial Time Algorithms for the Rectilinear Steiner Tree Problem; D.A. Thomas, Jai F. Weng. Minimum Networks for Separating and Surrounding Objects; Jai F. Weng. A First Level Scatter Search Implementation for Solving the Steiner Ring Problem in Telecommunications Network Design; Jiefeng Xu, et al. The Rectilinear Steiner Tree Problem: A Tutorial; M. Zachariasen.
Book by None
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2411530140756
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 788150-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781402000997_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 788150-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 788150
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 788150
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Codice articolo 64772131
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 524. Codice articolo 263068165
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 524 Illus. Codice articolo 5861082
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 524. Codice articolo 183068175
Quantità: 4 disponibili