The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface. Foreword. Table of Contents. List of Figures. Executive Summary. 1. Spin Electronics-Is It the Technology of the Future? S. von Molnár. Introduction. This Study. Spin Electronics: A Significant Field of Scientific Inquiry? Conclusions. Acknowledgements. References. 2. Materials for Semiconductor Spin Electronics; S. von Molnár. Discussion. Conclusions. References. 3. Fabrication and Characterization of Magnetic Nanostructures; M.L. Roukes. Background and Overview. Fabrication of Magnetic Nanostructures. Characterization of Magnetic Nanostructures. Near-term Perspective and Interim Conclusions. References. 4. Spin Injection, Spin Transport and Spin Transfer; R.A. Buhrman. Background and Overview. Research Activities in Japan. Research Activities in Europe. Concluding Comments. References. 5. Optoelectronic Manipulation of Spin in Semiconductors; D.D. Awschalom. Introduction. Optoelectronic Manipulation of Spin Coherence in Semiconductors and Nanostructures. Spin Transport in Heterostructures and Coherent Spintronics. Role of Disorder in Spin-based Electronics. Magnetic Doping in Semiconductor Heterostructures: Integration of Magnetics and Electronics. Optical Manipulation of Nuclear Spins. Artificial Atoms in the Solid State: Quantum Dots. Outlook and General Conclusions. References. 6. Magnetoelectronic Devices; J.M. Daughton. Overview of Issues for Magnetoelectronic Devices. Salient Features of Magnetoelectronics Research in Europe and Japan. Comparison of Japan and Europe Research with that in the United States. References. Appendices: Appendix A. Biographies of Team Members. Appendix B. SiteReports-Europe. Appendix C. Site Reports - Japan. Appendix D. Highlights of Recent U.S. Research and Development Activities. Appendix E. Glossary. Appendix F. Index of Sites.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: HPB-Red, Dallas, TX, U.S.A.
hardcover. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_448157057
Quantità: 1 disponibili
Da: Books-R-Keen, DuBois, PA, U.S.A.
hardcover. Condizione: Very Good. Excellent condition, dust jacket included when applicable, no markings in text. Codice articolo 61D48084
Quantità: 1 disponibili
Da: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Germania
16 x 24 cm. XXIV, 198 S. XXIV, 198 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Codice articolo 3121VB
Quantità: 1 disponibili
Da: Toscana Books, AUSTIN, TX, U.S.A.
Hardcover. Condizione: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Codice articolo Scanned1402018029
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2411530142097
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 2029661-n
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781402018022
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. One notable exception, however, is that of spin electronics (also called spintronics, magnetoelectronics or magnetronics), wherein information is carried by electron spin in addition to, or in place of, electron charge. It is now well established in scientific and engineering communities that Moore's Law, having been an excellent predictor of integrated circuit density and computer performance since the 1970s, now faces great challenges as the scale of electronic devices has been reduced to the level where quantum effects become significant factors in device operation. Electron spin is one such effect that offers the opportunity to continue the gains predicted by Moore's Law, by taking advantage of the confluence of magnetics and semiconductor electronics in the newly emerging discipline of spin electronics. From a fundamental viewpoine, spin-polarization transport in a material occurs when there is an imbalance of spin populations at the Fermi energy. In ferromagnetic metals this imbalance results from a shift in the energy states available to spin-up and spin-down electrons. In practical applications, a ferromagnetic metal may be used as a source of spin-polarized electronics to be injected into a semiconductor, a superconductor or a normal metal, or to tunnel through an insulating barrier. 226 pp. Englisch. Codice articolo 9781402018022
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 2029661-n
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The history of scientific research and technological development is replete with examples of breakthroughs that have advanced the frontiers of knowledge, but seldom does it record events that constitute paradigm shifts in broad areas of intellectual pursuit. Codice articolo 4092776
Quantità: Più di 20 disponibili