IQ Calibration Techniques for Cmos Radio Tranceivers - Rilegato

Chen, Sao-jie; Hsieh, Yong-hsiang

 
9781402050824: IQ Calibration Techniques for Cmos Radio Tranceivers

Sinossi

The 802.11n wireless standard uses 64-state quadrature amplitude modulation (64-QAM) to achieve higher spectral efficiency. Consequently, the transmitter and receiver require a higher signal to noise ratio with the same level of error rate performance. This book offers a fully-analog compensation technique without baseband circuitry to control the calibration process. Using an 802.11g transceiver design as an example, it describes in detail an auto-calibration mechanism for I/Q gains and phases imbalance.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

List of Figures. List of Tables. List of Abbreviations. Preface. Acknowledgments. 1. INTRODUCTION. 1. Wireless LAN Standards. 1.1 IEEE 802.11. 1.2 HiperLan. 1.3 HiperLan II. 1.4 OpenAir. 1.5 HomeRF and SWAP. 1.6 BlueTooth. 2. Wireless in the 21st Century. 3. The 802 Standard and The IEEE. 3.1 IEEE 802.11b. 3.2 IEEE 802.11a. 3.3 IEEE 802.11g. 3.4 Performance and Characeristic. 4. Background and Motivation. 5. IEEE 802.11g RF Transceiver Performance Requirement. 5.1 Synthesizer Output Phase Noise. 5.2 Circuit Linearity. 5.3 Modulator/Demodulator I/Q Gain and Phase Imbalance. 6 Transceiver Design Goal. 6.1 Solutions on I/Q Balance. 2. TRANSCEIVER ARCHITECTURE DESIGN. 1. Receiver Architecture. 1.1 Superheterodyne Receiver. 1.2 Low-IF Receiver. 1.3 Zero-IF Receiver. 2. Comparison of Our Choice. 3. Transceiver Architecture. 4. The Choice of Intermediary Frequency. 5. Receiver Chain Link Budget. 5.1 Receiver Adjacent Channel Rejection. 5.2 Receiver Cascade Gain. 5.3 Receiver Cascade Noise Figure. 5.4 Receiver Dynamic Range. 5.4.1 RF/IF Section Gain Windows. 5.4.2 Receiver IF VGA and I/Q Demodulator Specification. 5.4.3 Cascade Gain of IF/BB. 5.4.4 Cascade Noise Figure of IF/BB. 6. Transmitter Chain Link Budget. 6.1 Transmit Circuits Gain Distribution and Gain Range. 6.2 Transmit Error Vector Magnitude. 6.3 Transmit Signal Spectral Mask. 3. I/Q MODULATOR AND DEMODULATOR DESIGN. 1. I/Q Modulator and Demodulator Architecture Overview. 2. Variable Gain Amplifier and Low-Pass Filter Re-use. 2.1 RX/TX Two-Mode Variable Gain Control Amplifier. 2.2 RX/TX Two-Mode Low-Pass Filter. 2.3 DC Offset Cancellation. 4. AN AUTO-I/Q CALIBRATED MODULATOR. 1. DC Offset, I/Q Gain and Phase Imbalance. 2. DC Offset, I/Q Gain and Phase Imbalance Auto-Calibration. 2.1 DC Offset Auto-Calibration. 2.2 I/Q Gain Imbalance Auto-Calibration. 2.3 I/Q Quadrature Phase Mismatch Auto-Calibration. 2.4 Implementation of I/Q Auto-Calibration Circuitry. 2.5 TX I/Q Auto-Calibration Measurement Result. 5. AN AUTO-I/Q CALIBRATED DEMODULATOR. 1. Single Test Tone Design. 2. I/Q Gain Imbalance and Quadrature Phase Mismatch Auto-Calibration. 2.1 I/Q Gain Imbalance Auto-Calibration. 2.2 I/Q Quadrature Phase Mismatch Auto-Calibration. 2.3 Implementation of I/Q Auto-Calibration Circuitry. 3. RX I/Q Auto-Calibration Measurement Result. 6. SYSTEM MEASUREMENT RESULT. 1. Transmitter Measurement Result. 2. Receiver Measurement Result. 7. CONCLUSION. References.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9789048172795: IQ Calibration Techniques for CMOS Radio Transceivers

Edizione in evidenza

ISBN 10:  9048172799 ISBN 13:  9789048172795
Casa editrice: Springer, 2010
Brossura