Exploration of Visual Data: 7 - Rilegato

Zhou, Xiang Sean; Rui, Yong; Huang, Thomas S.

 
9781402075698: Exploration of Visual Data: 7

Sinossi

Exploration of Visual Data presents latest research efforts in the area of content-based exploration of image and video data. The main objective is to bridge the semantic gap between high-level concepts in the human mind and low-level features extractable by the machines.

The two key issues emphasized are "content-awareness" and "user-in-the-loop". The authors provide a comprehensive review on algorithms for visual feature extraction based on color, texture, shape, and structure, and techniques for incorporating such information to aid browsing, exploration, search, and streaming of image and video data. They also discuss issues related to the mixed use of textual and low-level visual features to facilitate more effective access of multimedia data.

Exploration of Visual Data provides state-of-the-art materials on the topics of content-based description of visual data, content-based low-bitrate video streaming, and latest asymmetric and nonlinear relevance feedback algorithms, which to date are unpublished.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1: Introduction. 1.1. Challenges. 1.2. Research Scope. 1.3. State-of-the-Art. 1.4. Outline of Book. 2: Overview Of Visual Information Representation. 2.1. Color. 2.2. Texture. 2.3. Shape. 2.4. Spatial Layout. 2.5. Interest Points. 2.6. Image Segmentation. 2.7. Summary. 3: Edge-based Structural Features. 3.1. Visual Feature Representation. 3.2. Edge-Based Structural Features. 3.3. Experiments and Analysis. 4: Probabilistic Local Structure Models. 4.1. Introduction. 4.2. The Proposed Modeling Scheme. 4.3. Implementation Issues. 4.4. Experiments and Discussion. 4.5. Summary and Discussion. 5: Constructing Table-of-Content for Videos. 5.1. Introduction. 5.2. Related Work. 5.3. The Proposed Approach. 5.4. Determination of the Parameters. 5.5. Experimental Results. 5.6. Conclusions. 6: Nonlinearly Sampled Video Streaming. 6.1. Introduction. 6.2. Problem Statement. 6.3. Frame Saliency Scoring. 6.4. Scenario and Assumptions. 6.5. Minimum Buffer Formulation. 6.6. Limited-Buffer Formulation. 6.7. Extensions and Analysis. 6.8. Experimental Evaluation. 6.9. Discussion. 7: Relevance Feedback for Visual Data Retrieval. 7.1. The Need for User-in-the-Loop. 7.2. Problem Statement. 7.3. Overview of Existing Techniques. 7.4.Learning from Positive Feedbacks. 7.5. Adding Negative Feedbacks: Discriminant Analysis? 7.6. Biased Discriminant Analysis. 7.7. Nonlinear Extensions Using Kernel and Boosting. 7.8. Comparisons and Analysis. 7.9. Relevance Feedback on Image Tiles. 8: Toward Unification of Keywords and Low-Level Contents. 8.1. Introduction. 8.2. Joint Querying and Relevance Feedback. 8.3. Learning Semantic Relations between Keywords. 8.4. Discussion. 9: Future Research Directions. 9.1. Low-level and intermediate-level visual descriptors. 9.2. Learning from user interactions. 9.3. Unsupervised detection of patterns/events. 9.4. Domain-specific applications. References. Index.

Product Description

Book by Xiang Zhou Sean Yong Rui Huang Thomas S

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9781461351061: Exploration of Visual Data: 7

Edizione in evidenza

ISBN 10:  1461351065 ISBN 13:  9781461351061
Casa editrice: Springer, 2012
Brossura