Testing Static Random Access Memories covers testing of one of the important semiconductor memories types; it addresses testing of static random access memories (SRAMs), both single-port and multi-port. It contributes to the technical acknowledge needed by those involved in memory testing, engineers and researchers. The book begins with outlining the most popular SRAMs architectures. Then, the description of realistic fault models, based on defect injection and SPICE simulation, are introduced. Thereafter, high quality and low cost test patterns, as well as test strategies for single-port, two-port and any p-port SRAMs are presented, together with some preliminary test results showing the importance of the new tests in reducing DPM level. The impact of the port restrictions (e.g., read-only ports) on the fault models, tests, and test strategies is also discussed.
Features:
-Fault primitive based analysis of memory faults,
-A complete framework of and classification memory faults,
-A systematic way to develop optimal and high quality memory test algorithms,
-A systematic way to develop test patterns for any multi-port SRAM,
-Challenges and trends in embedded memory testing.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From the reviews:
"Static random access memories (SRAMs) enjoy a strategic position in the microelectronic industry. ... This book concentrates on the study of fault modeling, testing and test strategies for SRAMs. ... The book provides a well-written coverage in the area of single-, two- and n-port SRAM testing, fault modeling, and simulation. It is well-organized and very timely. ... The book promises to make valuable contribution to the education of graduate students ... . I highly recommend this book ... ." (Mile Stojcev, Microelectronics Reliability, Vol. 45, 2005)
Preface. Acknowledgements. Symbols and notations. I: Introductory. 1. Introduction. 1.1. Test philosophy. 1.2. Memory technology. 1.3. Modeling amd testing faults in SRAMs. 2. Semiconductor memory architecture. 2.1. Memory models. 2.2. External memory behavior. 2.3. Functional memory behavior. 2.4. Electrical memory behavior. 2.5. Memory process technology. 3. Space of memory faults. 3.1. Concept of fault primitive. 3.2. Classification of fault primitives. 3.3. Single-port faults. 3.4. Two-port fault primitives. 4. Preparation for circuit simulation. 4.1. Selected multi-port SRAM cell. 4.2. Modeling of spot defects. 4.3. Definition and location of opens. 4.4. Definition and location of shorts. 4.5. Definition and location of bridges. 4.6. Simulation model. 4.7. Simulation methodology. 4.8. Simulation results for the fault free case. II: Testing single-port and two-port SRAMs. 5. Experimental analysis of two-port SRAMs. 5.1. The to-be simulated spot defects. 5.2. Simulation results. 5.3. Realistic fault models. 5.4. Fault probability analysis. 6. Tests for single-port and two-port SRAMs. 6.1. Notation for march tests. 6.2. Tests for single-port faults. 6.3. Conditions for detecting two-port faults. 6.4. Tests for two-port faults. 6.5. Comparison with other tests. 6.6. Test strategy. 6.7. Test results versus fault probabilities. 7. Testing restricted two-port SRAMs. 7.1. Classification of two-port memories. 7.2. Realistic faults for 2P memories. 7.3. Tests for restricted two-port memories. 7.4. Test strategy for restricted two-port memories. III: Testing p-port SRAMs. 8. Experimental analysis of p-port SRAMs. 8.1. The to-be simulated spot defects. 8.2. Simulation results. 8.3. Realistic fault models for three-port memories. 8.4. Fault probabilities analysis. 8.5. Realistic fault models for p-port memories. 9. Tests for p-port SRAMs. 9.1. Conditions for detecting p-port faults. 9.2. Tests for p-port faults. 9.3. Test strategy. 10. Testing restricted p-port SRAMs. 10.1. Classification of p-port memories. 10.2.Realistic faults for restricted p-port memories. 10.3. Tests for restricted p-port memories. 10.4. Test strategy for restricted p-port memories. 11. Trends in embedded memory testing. 11.1. Introduction. 11.2. Fault modeling. 11.3. Test algorithm design. 11.4. Built-in-self test (BIST). 11.5. Built-in-self repair (BISR). 11.6. Putting all together. Bibliography. A: Simulation results for two-port SRAMs. A.1. Simulation results for opens. A.2. Simulation results for shorts. A.3. Simulation results for bridges. B: Simulation results for three-port SRAMs. B.1. Simulation results for opens and shorts. B.2. Simulation results f
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: HPB-Red, Dallas, TX, U.S.A.
Hardcover. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_333237746
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2411530144973
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 2071126-n
Quantità: Più di 20 disponibili
Da: Romtrade Corp., STERLING HEIGHTS, MI, U.S.A.
Condizione: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Codice articolo ABNR-92114
Quantità: 1 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEOCT25-155486
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781402077524_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 2071126-n
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Testing Static Random Access Memories covers testing of one of the important semiconductor memories types; it addresses testing of static random access memories (SRAMs), both single-port and multi-port. It contributes to the technical acknowledge needed by those involved in memory testing, engineers and researchers. The book begins with outlining the most popular SRAMs architectures. Then, the description of realistic fault models, based on defect injection and SPICE simulation, are introduced. Thereafter, high quality and low cost test patterns, as well as test strategies for single-port, two-port and any p-port SRAMs are presented, together with some preliminary test results showing the importance of the new tests in reducing DPM level. The impact of the port restrictions (e.g., read-only ports) on the fault models, tests, and test strategies is also discussed. Features: -Fault primitive based analysis of memory faults, -A complete framework of and classification memory faults, -A systematic way to develop optimal and high quality memory test algorithms, -A systematic way to develop test patterns for any multi-port SRAM, -Challenges and trends in embedded memory testing. 244 pp. Englisch. Codice articolo 9781402077524
Quantità: 2 disponibili
Da: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Codice articolo SHAK155486
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Testing Static Random Access Memories covers testing of one of the important semiconductor memories types it addresses testing of static random access memories (SRAMs), both single-port and multi-port. It contributes to the technical ackno. Codice articolo 4095290
Quantità: Più di 20 disponibili