Big Data Imperatives, focuses on resolving the key questions on everyone’s mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications?
Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use.
This book addresses the following big data characteristics:
Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible.
This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this bookintends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Soumendra Mohanty? is a Partner and leads Accenture?s Global Information Management Services practice. He is an expert within the Information Management area, focusing primarily on BI architectures, data warehouse, CRM/Customer Insight, MDM, Analytics and PCM solutions.? He is experienced in leading project teams through the lifecycle of a project, and has successfully helped sell and delivered BI and DW projects in multiple industries, including products, CPG, brokerage, banking, telecommunications, and retail.Soumendra has authored several books on data warehousing and Analytics and published numerous journals in DM Review. He has also presented in numerous international forums. His functional expertise ranges from Big Data Analytics, BI Architectures, Data Warehouse, CRM/Customer Insight, Supply Chain Analytics, Marketing Insights, & MDM.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
GRATIS per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 3,41 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: BooksRun, Philadelphia, PA, U.S.A.
Paperback. Condizione: Very Good. 1st ed. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Codice articolo 1430248726-8-1
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2411530239315
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 19181814-n
Quantità: Più di 20 disponibili
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo b7b1c5c7ae9f2b82886762640ffbef5f
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 19181814
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Mason, OH, U.S.A.
Paperback. Condizione: new. Paperback. Big Data Imperatives, focuses on resolving the key questions on everyones mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications?Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use.This book addresses the following big data characteristics:Very large, distributed aggregations of loosely structured data often incomplete and inaccessible Petabytes/Exabytes of data Millions/billions of people providing/contributing to the context behind the data Flat schema's with few complex interrelationships Involves time-stamped events Made up of incomplete data Includes connections between data elements that must be probabilistically inferred Big Data Imperatives explains 'what big data can do'. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform to merge all analysis which enables data analysis to be more accurate, well-rounded, reliable and focused on a specific business capability.Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible. This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this bookintends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data. Big Data Imperatives, focuses on resolving the key questions on every one's mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications? Big data is emerging from the realm of one-off projects to mainstream business adoption; however the real value of big data is not in the overwhelming size of it, but more in its effective use. Your goal may be to obtain insight from voluminous data, with billions of loosely-structured bytes of data coming from different channels spread across different locations, which needs to be processed until the needle in the haystack is found. This book addresses the following big data characteristics: Very large, distributed aggregations of loosely structured data - often incomplete and inaccessible Petabytes/Exabytes of data Millions/billions of people providing/contributing to the context behind the data Flat schema's with few complex interrelationships Involves time-stamped events Made up of incomplete data Includes connections between data elements that must be probabilistically inferred Big data imperatives, explains 'what big data can do'. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform, to merge all analysis which enables data analysis to be more accurate, well-rounded, reliable and focused on a specific business capability. Big data imperatives, describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book ai Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781430248729
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 19181814-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781430248729_new
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. New copy - Usually dispatched within 7-11 working days. 484. Codice articolo B9781430248729
Quantità: 15 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Big Data Imperatives, focuses on resolving the key questions on everyone's mind: Which data matters Do you have enough data volume to justify the usage How you want to process this amount of data How long do you really need to keep it active for your analysis, marketing, and BI applications Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use.This book addresses the following big data characteristics: Very large, distributed aggregations of loosely structured data - often incomplete and inaccessible Petabytes/Exabytes of data Millions/billions of people providing/contributing to the context behind the data Flat schema's with few complex interrelationships Involves time-stamped events Made up of incomplete data Includes connections between data elements that must be probabilistically inferred Big Data Imperatives explains 'what big data can do'. It can batch process millions and billions of records both unstructured and structured much faster and cheaper. Big data analytics provide a platform to merge all analysis which enables data analysis to be more accurate, well-rounded, reliable and focused on a specific business capability.Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible. This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this book intends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data. 320 pp. Englisch. Codice articolo 9781430248729
Quantità: 2 disponibili