"Neural Network-Based State Estimation of Nonlinear Systems" presents efficient, easy to implement neural network schemes for state estimation, system identification, and fault detection and Isolation with mathematical proof of stability, experimental evaluation, and Robustness against unmolded dynamics, external disturbances, and measurement noises.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
This series aims to report new developments in the fields of control and information sciences quickly, informally and at a high level. The type material considered for publication includes:
1. Preliminary drafts of monographs and advanced textbooks
2. Lectures on a new field, or presenting a new angle on a classical field
3. Research reports
4. Reports of meetings, provided they are a) of exceptional interest and b) devoted to a specific topic. The timeliness of subject material is very important.
Information for Authors
Manuscripts should be written in English and be no less the 100, preferably no more than 500 pages. The manuscript in its final and approved version must be submitted in camera-ready form. Authors are encouraged to use LATEX together with the corresponding Springer LATEX macro packages. The corresponding electronic files are also required for the production process, in paticular the online version. Detailed instructions for authors can be found on the engineering site of our homepage: springer.com/series/642. Manuscripts should be sent to one of the series editors, Professor Dr.-Ing. M. Thomas, Institut für Regelungstechnik, Technische Universität, Appelstraße 11, 30167 Hannover, Germany, or Professor M. Morari, Institut für Automatik, ETH/ETL I 29, Physikstraße 3, 8092 Zürich, Switzerland, or directly to the Engineering Editor, Springer-Verlag, Tiergartenstresße 17, 69121 Heidelberg, Germany.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo c4a9b9bf618b064dcb58b5a6cc533d8a
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2411530293555
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 7764358-n
Quantità: 15 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781441914378_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 7764358-n
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -'Neural Network-Based State Estimation of Nonlinear Systems' presents efficient, easy to implement neural network schemes for state estimation, system identification, and fault detection and Isolation with mathematical proof of stability, experimental evaluation, and Robustness against unmolded dynamics, external disturbances, and measurement noises. 154 pp. Englisch. Codice articolo 9781441914378
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 176. Codice articolo 261152628
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents both the Linear-in-Parameter Neural Network based observer and the Nonlinear-in-Parameter Neural Network based observer approaches to nonlinear systemsDiscusses the neural network structure for fault detection actuators using an applicati. Codice articolo 4172282
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. pp. 176 100 Illus. Codice articolo 6695339
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. pp. 176. Codice articolo 181152638
Quantità: 1 disponibili