The first six chapters and Appendix 1 of this book appeared in Japanese in a book of the same title 15years aga (Jikkyo, Tokyo, 1980).At the request of some people who do not wish to learn Japanese, I decided to rewrite my old work in English. This time, I added a chapter on the arithmetic of quadratic maps (Chapter 7) and Appendix 2, A Short Survey of Subsequent Research on Congruent Numbers, by M. Kida. Some 20 years ago, while rifling through the pages of Selecta Heinz Hopj (Springer, 1964), I noticed a system of three quadratic forms in four variables with coefficientsin Z that yields the map of the 3-sphere to the 2-sphere with the Hopf invariant r =1 (cf. Selecta, p. 52). Immediately I feit that one aspect of classical and modern number theory, including quadratic forms (Pythagoras, Fermat, Euler, and Gauss) and space elliptic curves as intersection of quadratic surfaces (Fibonacci, Fermat, and Euler), could be considered as the number theory of quadratic maps-especially of those maps sending the n-sphere to the m-sphere, i.e., the generalized Hopf maps. Having these in mind, I deliveredseverallectures at The Johns Hopkins University (Topics in Number Theory, 1973-1974, 1975-1976, 1978-1979, and 1979-1980). These lectures necessarily contained the following three basic areas of mathematics: v vi Preface Theta Simple Functions Aigebras Elliptic Curves Number Theory Figure P.l.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
From a review of the Japanese-language edition:
`A beautifully written book...The statement of the problem is very clear-that is, [the author] claims that one aspect of classical and modern number theory can be considered as the number theory of Hopf maps-and then he solves this problem....skillfully and perspectively organized...This book will be a good introductory textbook...There has never been a textbook similar to this....I highly recommend this book.'
Michio Kuga, Professor, late of State University of New York at Stony Brook
Introduction. Quadratic Forms. Algebraic Varieties. Plane Algebraic Curves. Space Elliptic Curves. Quadratic Spherical Maps. Hurwitz Problem. Arithmetic of Quadratic Maps. Answers and Hints to Selected Exercises. Appendixes. Index.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2411530294822
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 11864448-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781441932419_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 11864448-n
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The first six chapters and Appendix 1 of this book appeared in Japanese in a book of the same title 15years aga (Jikkyo, Tokyo, 1980).At the request of some people who do not wish to learn Japanese, I decided to rewrite my old work in English. This time, I added a chapter on the arithmetic of quadratic maps (Chapter 7) and Appendix 2, A Short Survey of Subsequent Research on Congruent Numbers, by M. Kida. Some 20 years ago, while rifling through the pages of Selecta Heinz Hopj (Springer, 1964), I noticed a system of three quadratic forms in four variables with coefficientsin Z that yields the map of the 3-sphere to the 2-sphere with the Hopf invariant r =1 (cf. Selecta, p. 52). Immediately I feit that one aspect of classical and modern number theory, including quadratic forms (Pythagoras, Fermat, Euler, and Gauss) and space elliptic curves as intersection of quadratic surfaces (Fibonacci, Fermat, and Euler), could be considered as the number theory of quadratic maps-especially of those maps sending the n-sphere to the m-sphere, i.e., the generalized Hopf maps. Having these in mind, I deliveredseverallectures at The Johns Hopkins University (Topics in Number Theory, 1973-1974, 1975-1976, 1978-1979, and 1979-1980). These lectures necessarily contained the following three basic areas of mathematics: v vi Preface Theta Simple Functions Aigebras Elliptic Curves Number Theory Figure P.l. 360 pp. Englisch. Codice articolo 9781441932419
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The first six chapters and Appendix 1 of this book appeared in Japanese in a book of the same title 15years aga (Jikkyo, Tokyo, 1980).At the request of some people who do not wish to learn Japanese, I decided to rewrite my old work in English. This time, I . Codice articolo 4173692
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 360, Maps. Codice articolo 263090507
Quantità: 4 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 535. Codice articolo C9781441932419
Quantità: Più di 20 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 360 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam, Maps. Codice articolo 5805972
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 360. Codice articolo 183090497
Quantità: 4 disponibili