Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics.
Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Preface. Output analysis for approximated stochastic programs; J. Dupacová. Combinatorial Randomized Rounding: Boosting Randomized Rounding with Combinatorial Arguments; P. Efraimidis, P.G. Spirakis. Statutory Regulation of Casualty Insurance Companies: An Example from Norway with Stochastic Programming Analysis; A. Gaivoronski, et al. Option pricing in a world with arbitrage; X. Guo, L. Shepp. Monte Carlo Methods for Discrete Stochastic Optimization; T. Homem-de-Mello. Discrete Approximation in Quantile Problem of Portfolio Selection; A. Kibzun, R. Lepp. Optimizing electricity distribution using two-stage integer recourse models; W.K. Klein Haneveld, M.H. van der Vlerk. A Finite-Dimensional Approach to Infinite-Dimensional Constraints in Stochastic Programming Duality; L. Korf. Non-Linear Risk of Linear Instruments; A. Kreinin. Multialgorithms for Parallel Computing: A New Paradigm for Optimization; J. Nazareth. Convergence Rate of Incremental Subgradient Algorithms; A. Nedic, D. Bertsekas. Transient Stochastic Models for Search Patterns; E. Pasiliao. Value-at-Risk Based Portfolio Optimization; A. Puelz. Combinatorial Optimization, Cross-Entropy, Ants and Rare Events; R.Y. Rubinstein. Consistency of Statistical Estimators: the Epigraphical View; G. Salinetti. Hierarchical Sparsity in Multistage Convex Stochastic Programs; M. Steinbach. Conditional Value-at-Risk: Optimization Approach; S. Uryasev, R.T. Rockafellar.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2411530296265
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunicat. Codice articolo 4175183
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781441948557_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering. 452 pp. Englisch. Codice articolo 9781441948557
Quantità: 2 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 454. Codice articolo 263099958
Quantità: 4 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Stochastic Optimization | Algorithms and Applications | Panos M. Pardalos (u. a.) | Taschenbuch | xii | Englisch | 2010 | Springer US | EAN 9781441948557 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Codice articolo 107252108
Quantità: 5 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 454 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 5829353
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 454. Codice articolo 183099964
Quantità: 4 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 452 pp. Englisch. Codice articolo 9781441948557
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Stochastic programming is the study of procedures for decision making under the presence of uncertainties and risks. Stochastic programming approaches have been successfully used in a number of areas such as energy and production planning, telecommunications, and transportation. Recently, the practical experience gained in stochastic programming has been expanded to a much larger spectrum of applications including financial modeling, risk management, and probabilistic risk analysis. Major topics in this volume include: (1) advances in theory and implementation of stochastic programming algorithms; (2) sensitivity analysis of stochastic systems; (3) stochastic programming applications and other related topics. Audience: Researchers and academies working in optimization, computer modeling, operations research and financial engineering. The book is appropriate as supplementary reading in courses on optimization and financial engineering. Codice articolo 9781441948557
Quantità: 1 disponibili