Analog integrated circuits are very important as interfaces between the digital parts of integrated electronic systems and the outside world. A large portion of the effort involved in designing these circuits is spent in the layout phase. Whereas the physical design of digital circuits is automated to a large extent, the layout of analog circuits is still a manual, time-consuming and error-prone task. This is mainly due to the continuous nature of analog signals, which causes analog circuit performance to be very sensitive to layout parasitics. The parasitic elements associated with interconnect wires cause loading and coupling effects that degrade the frequency behaviour and the noise performance of analog circuits. Device mismatch and thermal effects put a fundamental limit on the achievable accuracy of circuits. For successful automation of analog layout, advanced place and route tools that can handle these critical parasitics are required.
In the past, automatic analog layout tools tried to optimize the layout without quantifying the performance degradation introduced by layout parasitics. Therefore, it was not guaranteed that the resulting layout met the specifications and one or more layout iterations could be needed. In Analog Layout Generation for Performance and Manufacturability, the authors propose a performance driven layout strategy to overcome this problem. In this methodology, the layout tools are driven by performance constraints, such that the final layout, with parasitic effects, still satisfies the specifications of the circuit. The performance degradation associated with an intermediate layout solution is evaluated at runtime using predetermined sensitivities. In contrast with other performance driven layout methodologies, the tools proposed in this book operate directly on the performance constraints, without an intermediate parasitic constraint generation step. This approach makes a completeand sensible trade-off between the different layout alternatives possible at runtime and therefore eliminates the possible feedback route between constraint derivation, placement and layout extraction.
Besides its influence on the performance, layout also has a profound impact on the yield and testability of an analog circuit. In Analog Layout Generation for Performance and Manufacturability, the authors outline a new criterion to quantify the detectability of a fault and combine this with a yield model to evaluate the testability of an integrated circuit layout. They then integrate this technique with their performance driven routing algorithm to produce layouts that have optimal manufacturability while still meeting their performance specifications.
Analog Layout Generation for Performance and Manufacturability will be of interest to analog engineers, researchers and students.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Abstract. 1. Introduction. 2. Performance Driven Layout of Analog Integrated Circuits. 3. Module Generation. 4. Placement. 5. Routing. 6. Implementation. 7. General Conclusions. Bibliography.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Analog integrated circuits are very important as interfaces between the digital parts of integrated electronic systems and the outside world. A large portion of the effort involved in designing these circuits is spent in the layout phase. Whereas the phy. Codice articolo 4175410
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Analog integrated circuits are very important as interfaces between the digital parts of integrated electronic systems and the outside world. A large portion of the effort involved in designing these circuits is spent in the layout phase. Whereas the physical design of digital circuits is automated to a large extent, the layout of analog circuits is still a manual, time-consuming and error-prone task. This is mainly due to the continuous nature of analog signals, which causes analog circuit performance to be very sensitive to layout parasitics. The parasitic elements associated with interconnect wires cause loading and coupling effects that degrade the frequency behaviour and the noise performance of analog circuits. Device mismatch and thermal effects put a fundamental limit on the achievable accuracy of circuits. For successful automation of analog layout, advanced place and route tools that can handle these critical parasitics are required. In the past, automatic analog layout tools tried to optimize the layout without quantifying the performance degradation introduced by layout parasitics. Therefore, it was not guaranteed that the resulting layout met the specifications and one or more layout iterations could be needed. In Analog Layout Generation for Performance and Manufacturability, the authors propose a performance driven layout strategy to overcome this problem. In this methodology, the layout tools are driven by performance constraints, such that the final layout, with parasitic effects, still satisfies the specifications of the circuit. The performance degradation associated with an intermediate layout solution is evaluated at runtime using predetermined sensitivities. In contrast with other performance driven layout methodologies, the tools proposed in this book operate directly on the performance constraints, without an intermediate parasitic constraint generation step. This approach makes a complete and sensible trade-off between the different layout alternatives possible at runtime and therefore eliminates the possible feedback route between constraint derivation, placement and layout extraction. Besides its influence on the performance, layout also has a profound impact on the yield and testability of an analog circuit. In Analog Layout Generation for Performance and Manufacturability, the authors outline a new criterion to quantify the detectability of a fault and combine this with a yield model to evaluate the testability of an integrated circuit layout. They then integrate this technique with their performance driven routing algorithm to produce layouts that have optimal manufacturability while still meeting their performance specifications. Analog Layout Generation for Performance and Manufacturability will be of interest to analog engineers, researchers and students. 196 pp. Englisch. Codice articolo 9781441950833
Quantità: 2 disponibili
Da: Best Price, Torrance, CA, U.S.A.
Condizione: New. SUPER FAST SHIPPING. Codice articolo 9781441950833
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Analog integrated circuits are very important as interfaces between the digital parts of integrated electronic systems and the outside world. A large portion of the effort involved in designing these circuits is spent in the layout phase. Whereas the physical design of digital circuits is automated to a large extent, the layout of analog circuits is still a manual, time-consuming and error-prone task. This is mainly due to the continuous nature of analog signals, which causes analog circuit performance to be very sensitive to layout parasitics. The parasitic elements associated with interconnect wires cause loading and coupling effects that degrade the frequency behaviour and the noise performance of analog circuits. Device mismatch and thermal effects put a fundamental limit on the achievable accuracy of circuits. For successful automation of analog layout, advanced place and route tools that can handle these critical parasitics are required.In the past, automatic analog layout tools tried to optimize the layout without quantifying the performance degradation introduced by layout parasitics. Therefore, it was not guaranteed that the resulting layout met the specifications and one or more layout iterations could be needed. In Analog Layout Generation for Performance and Manufacturability, the authors propose a performance driven layout strategy to overcome this problem. In this methodology, the layout tools are driven by performance constraints, such that the final layout, with parasitic effects, still satisfies the specifications of the circuit. The performance degradation associated with an intermediate layout solution is evaluated at runtime using predetermined sensitivities. In contrast with other performance driven layout methodologies, the tools proposed in this book operate directly on the performance constraints, without an intermediate parasitic constraint generation step. This approach makes a completeand sensible trade-off between the different layout alternatives possible at runtime and therefore eliminates the possible feedback route between constraint derivation, placement and layout extraction.Besides its influence on the performance, layout also has a profound impact on the yield and testability of an analog circuit. In Analog Layout Generation for Performance and Manufacturability, the authors outline a new criterion to quantify the detectability of a fault and combine this with a yield model to evaluate the testability of an integrated circuit layout. They then integrate this technique with their performance driven routing algorithm to produce layouts that have optimal manufacturability while still meeting their performance specifications.Analog Layout Generation for Performance and Manufacturability will be of interest to analog engineers, researchers and students.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 196 pp. Englisch. Codice articolo 9781441950833
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781441950833_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Analog integrated circuits are very important as interfaces between the digital parts of integrated electronic systems and the outside world. A large portion of the effort involved in designing these circuits is spent in the layout phase. Whereas the physical design of digital circuits is automated to a large extent, the layout of analog circuits is still a manual, time-consuming and error-prone task. This is mainly due to the continuous nature of analog signals, which causes analog circuit performance to be very sensitive to layout parasitics. The parasitic elements associated with interconnect wires cause loading and coupling effects that degrade the frequency behaviour and the noise performance of analog circuits. Device mismatch and thermal effects put a fundamental limit on the achievable accuracy of circuits. For successful automation of analog layout, advanced place and route tools that can handle these critical parasitics are required. In the past, automatic analog layout tools tried to optimize the layout without quantifying the performance degradation introduced by layout parasitics. Therefore, it was not guaranteed that the resulting layout met the specifications and one or more layout iterations could be needed. In Analog Layout Generation for Performance and Manufacturability, the authors propose a performance driven layout strategy to overcome this problem. In this methodology, the layout tools are driven by performance constraints, such that the final layout, with parasitic effects, still satisfies the specifications of the circuit. The performance degradation associated with an intermediate layout solution is evaluated at runtime using predetermined sensitivities. In contrast with other performance driven layout methodologies, the tools proposed in this book operate directly on the performance constraints, without an intermediate parasitic constraint generation step. This approach makes a completeand sensible trade-off between the different layout alternatives possible at runtime and therefore eliminates the possible feedback route between constraint derivation, placement and layout extraction. Besides its influence on the performance, layout also has a profound impact on the yield and testability of an analog circuit. In Analog Layout Generation for Performance and Manufacturability, the authors outline a new criterion to quantify the detectability of a fault and combine this with a yield model to evaluate the testability of an integrated circuit layout. They then integrate this technique with their performance driven routing algorithm to produce layouts that have optimal manufacturability while still meeting their performance specifications. Analog Layout Generation for Performance and Manufacturability will be of interest to analog engineers, researchers and students. Codice articolo 9781441950833
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 329. Codice articolo C9781441950833
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 192. Codice articolo 263081837
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 192 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 5814706
Quantità: 4 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 192 pages. 9.00x6.25x0.44 inches. In Stock. Codice articolo x-1441950834
Quantità: 2 disponibili