Overview and Introduction.- Part I: Preliminaries.- Linear Spectral Mixture Analysis.- Finding Endmembers in Hyperspectral Imagery.- Linear Spectral Unmixing with Three Criteria, Least Squares Error, Simplex Volume and Orthogonal Projection.- Hyperspectral Target Detection.- Part II: Sample-wise Sequential Processes for Finding Endmembers.- Abundance-Unconstrained Sequential Endmember Finding Algorithms: Orthogonal Projection.- Fully Abundance-Constrained Sequential Endmember Finding Algorithms: Simplex Volume Analysis.- Partially Abundance Non-Negativity-Constrained Endmember Finding Algorithms: Convex Cone Volume Analysis.- Fully Abundance-Constrained Sequential Linear Spectral Mixture Analysis for Finding Endmembers.- Part III: Sample-Wise Progressive Processes for Finding Endmembers.- Abundance-Unconstrained Progressive Endmember Finding Algorithms: Orthogonal Projection.- Fully Abundance-Unconstrained Progressive Endmember Finding Algorithms: Simplex Volume Analysis.- Partially Abundance Non-Negativity-Constrained Progressive Endmember Finding Algorithms: Convex Cone Volume Analysis.- Sully Abundance-Constrained Progressive Linear Spectral Mixture Analysis for Finding Endmembers.- Part IV: Sample-Wise Progressive Unsupervised Target Detection.- Progressive Anomaly Detection.- Progressive Adaptive Anomaly Detection.- Progressive Window-Based Anomaly Detection.- Progressive Subpixel Target Detectio n and Classification.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
(nessuna copia disponibile)
Cerca: Inserisci un desiderataNon riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!
Inserisci un desiderata