Articoli correlati a Predictive learning analytics with data pipeline variability

Predictive learning analytics with data pipeline variability - Brossura

 
9781444054873: Predictive learning analytics with data pipeline variability

Al momento non sono disponibili copie per questo codice ISBN.

Sinossi

Monte Carlo simulation studies are used to examine how eight factors impact predictions of a binary target outcome in data science pipelines: (1) the choice of four DMMs [Logistic Regression (LR), Elastic Net Regression (GLMNET), Random Forest (RF), Extreme Gradient Boosting (XGBoost)], (2) the choice of three filter preprocessing feature selection techniques [Correlation Attribute Evaluation (CAE), Fisher's Scoring Algorithm (FSA), Information Gain Attribute Evaluation (IG)], (3) number of training observations, (4) number of features, (5) error of measurement, (6) class imbalance magnitude, (7) missing data pattern, and (8) feature selection cutoff. The findings are consistent with literature about which data properties and algorithms perform best. Measurement error negatively impacted pipeline performance across all factors, DMMs, and feature selection techniques.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

(nessuna copia disponibile)

Cerca:



Inserisci un desiderata

Non riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!

Inserisci un desiderata