In this work, the unique power measurement capabilities of the Cray XT architecture were exploited to gain an understanding of power and energy use, and the effects of tuning both CPU and network bandwidth. Modifications were made to deterministically halt cores when idle. Additionally, capabilities were added to alter operating P-state. At the application level, an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale is gained by simultaneously collecting current and voltage measurements on the hosting nodes. The effects of both CPU and network bandwidth tuning are examined, and energy savings opportunities without impact on run-time performance are demonstrated. This research suggests that next-generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components to achieve more energy-efficient performance.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Recognition of the importance of power and energy in the field of high performance computing (HPC) has never been greater. Research has been conducted in a number of areas related to power and energy, but little existing research has focused on large-scale HPC. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To analyze real scientific computing applications at large scale, an in situ measurement capability is necessary that scales to the size of the platform.
In response to this challenge, the unique power measurement capabilities of the Cray XT architecture were exploited to gain an understanding of power and energy use and the effects of tuning both CPU and network bandwidth. Modifications were made at the operating system level to deterministically halt cores when idle. Additionally, capabilities were added to alter operating P-state. At the application level, an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes) is gained by simultaneously collecting current and voltage measurements on the hosting nodes. The effects of both CPU and network bandwidth tuning are examined and energy savings opportunities of up to 39% with little or no impact on run-time performance is demonstrated. Capturing scale effects was key. This research provides strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, as we will demonstrate, but could also benefit from the capability to tune other platform components, such as the network, to achieve more energy efficient performance.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 9,90 per la spedizione da Germania a Italia
Destinazione, tempi e costiEUR 11,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: Buchpark, Trebbin, Germania
Condizione: Sehr gut. Zustand: Sehr gut | Seiten: 84 | Sprache: Englisch | Produktart: Bücher. Codice articolo 22627120/12
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Recognition of the importance of power and energy in the field of high performance computing (HPC) has never been greater. Research has been conducted in a number of areas related to power and energy, but little existing research has focused on large-scale HPC. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To analyze real scientific computing applications at large scale, an in situ measurement capability is necessary that scales to the size of the platform.In response to this challenge, the unique power measurement capabilities of the Cray XT architecture were exploited to gain an understanding of power and energy use and the effects of tuning both CPU and network bandwidth. Modifications were made at the operating system level to deterministically halt cores when idle. Additionally, capabilities were added to alter operating P-state. At the application level, an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes) is gained by simultaneously collecting current and voltage measurements on the hosting nodes. The effects of both CPU and network bandwidth tuning are examined and energy savings opportunities of up to 39% with little or no impact on run-time performance is demonstrated. Capturing scale effects was key. This research provides strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, as we will demonstrate, but could also benefit from the capability to tune other platform components, such as the network, to achieve more energy efficient performance. 84 pp. Englisch. Codice articolo 9781447144915
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Examines the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scaleDemonstrates how CPU and network bandwidth tuning can result in energy savings with little or no impact on run-time. Codice articolo 4184977
Quantità: Più di 20 disponibili
Da: Brook Bookstore On Demand, Napoli, NA, Italia
Condizione: new. Questo è un articolo print on demand. Codice articolo 157e77fdfd417c4a6af0d07f700ba5cb
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -In this work, the unique power measurement capabilities of the Cray XT architecture were exploited to gain an understanding of power and energy use, and the effects of tuning both CPU and network bandwidth. Modifications were made to deterministically halt cores when idle. Additionally, capabilities were added to alter operating P-state. At the application level, an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale is gained by simultaneously collecting current and voltage measurements on the hosting nodes. The effects of both CPU and network bandwidth tuning are examined, and energy savings opportunities without impact on run-time performance are demonstrated. This research suggests that next-generation large-scale platforms should not only approach CPU frequency scaling differently, but could also benefit from the capability to tune other platform components to achieve more energy-efficient performance.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 84 pp. Englisch. Codice articolo 9781447144915
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781447144915_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Recognition of the importance of power and energy in the field of high performance computing (HPC) has never been greater. Research has been conducted in a number of areas related to power and energy, but little existing research has focused on large-scale HPC. Part of the reason is the lack of measurement capability currently available on small or large platforms. Typically, research is conducted using coarse methods of measurement such as inserting a power meter between the power source and the platform, or fine grained measurements using custom instrumented boards (with obvious limitations in scale). To analyze real scientific computing applications at large scale, an in situ measurement capability is necessary that scales to the size of the platform.In response to this challenge, the unique power measurement capabilities of the Cray XT architecture were exploited to gain an understanding of power and energy use and the effects of tuning both CPU and network bandwidth. Modifications were made at the operating system level to deterministically halt cores when idle. Additionally, capabilities were added to alter operating P-state. At the application level, an understanding of the power requirements of a range of important DOE/NNSA production scientific computing applications running at large scale (thousands of nodes) is gained by simultaneously collecting current and voltage measurements on the hosting nodes. The effects of both CPU and network bandwidth tuning are examined and energy savings opportunities of up to 39% with little or no impact on run-time performance is demonstrated. Capturing scale effects was key. This research provides strong evidence that next generation large-scale platforms should not only approach CPU frequency scaling differently, as we will demonstrate, but could also benefit from the capability to tune other platform components, such as the network, to achieve more energy efficient performance. Codice articolo 9781447144915
Quantità: 1 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 172. Codice articolo C9781447144915
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
Paperback. Condizione: New. Codice articolo 6666-IUK-9781447144915
Quantità: 10 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Paperback. Condizione: Brand New. 2013 edition. 81 pages. 9.25x0.20x6.10 inches. In Stock. Codice articolo x-1447144910
Quantità: 2 disponibili