Part I: Fundamentals
Introduction
Probability Theory
Graph Theory
Part II: Probabilistic Models
Bayesian Classifiers
Hidden Markov Models
Markov Random Fields
Bayesian Networks: Representation and Inference
Bayesian Networks: Learning
Dynamic and Temporal Bayesian Networks
Part III: Decision Models
Decision Graphs
Markov Decision Processes
Part IV: Relational and Causal Models
Relational Probabilistic Graphical Models
Graphical Causal Models
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
(nessuna copia disponibile)
Cerca: Inserisci un desiderataNon riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!
Inserisci un desiderata