9781461264606: A First Course in Real Analysis

Sinossi

This book is designed for a first course in real analysis following the standard course in elementary calculus. The book contains a full treatment (with many illustrative samples and exercises) of the standard topics in infinite metric spaces, and vector field theory. This new edition includes an assortment of new exercises and provides answers for the od-numbered problems.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Contenuti

1: The Real Number System. 2: Continuity and Limits. 3: Basic Properties of Functions on R. 4: Elementary Theory of Differentiation. 5: Elementary Theory of Integration. 6: Elementary Theory of Metric Spaces. 7: Differentiation in R. 8: Integration in R. 9: Infinite Sequences and Infinite Series. 10: Fourier Series. 11: Functions Defined by Integrals; Improper Integrals. 12: The Riemann-Stieltjes Integral and Functions of Bounded Variation. 13: Contraction Mappings, Newton's Method, and Differential Equations. 14: Implicit Function Theorems and Lagrange Multipliers. 15: Functions on Metric Spaces; Approximation. 16: Vector Field Theory; the Theorems of Green and Stokes. Appendices.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Altre edizioni note dello stesso titolo

9780387974378: A First Course in Real Analysis

Edizione in evidenza

ISBN 10:  0387974377 ISBN 13:  9780387974378
Casa editrice: Springer Nature, 1991
Rilegato