Elliptic boundary problems have enjoyed interest recently, espe cially among C* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity? Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
I. Clifford Algebras and Dirac Operators.- 1. Clifford Algebras and Clifford Modules.- 2. Clifford Bundles and Compatible Connections.- 3. Dirac Operators.- 4. Dirac Laplacian and Connection Laplacian.- 5. Euclidean Examples.- 6. The Classical Dirac (Atiyah-Singer) Operators on Spin Manifolds.- 7. Dirac Operators and Chirality.- 8. Unique Continuation Property for Dirac Operators.- 9. Invertible Doubles.- 10. Glueing Constructions. Relative Index Theorem.- II. Analytical and Topological Tools.- 11. Sobolev Spaces on Manifolds with Boundary.- 12. Calderón Projector for Dirac Operators.- 13. Existence of Traces of Null Space Elements.- 14. Spectral Projections of Dirac Operators.- 15. Pseudo-Differential Grassmannians.- 16. The Homotopy Groups of the Space of Self-Adjoint Fredholm Operators.- 17. The Spectral Flow of Families of Self-Adjoint Operators.- III. Applications.- 18. Elliptic Boundary Problems and Pseudo-Differential Projections.- 19. Regularity of Solutions of Elliptic Boundary Problems.- 20. Fredholm Property of the Operator AR.- 21. Exchanges on the Boundary: Agranovi?-Dynin Type Formulas and the Cobordism Theorem for Dirac Operators.- 22. The Index Theorem for Atiyah-Patodi-Singer Problems.- 23. Some Remarks on the Index of Generalized Atiyah-Patodi-Singer Problems.- 24. Bojarski’s Theorem. General Linear Conjugation Problems.- 25. Cutting and Pasting of Elliptic Operators.- 26. Dirac Operators on the Two-Sphere.
Book by BooBavnbek Bernhelm Wojciechhowski Krzysztof P
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2716030028199
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 19490308-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781461267133_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 19490308-n
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Elliptic boundary problems have enjoyed interest recently, espe cially among C\* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason. 328 pp. Englisch. Codice articolo 9781461267133
Quantità: 2 disponibili
Da: moluna, Greven, Germania
Condizione: New. Codice articolo 4189357
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 484. Codice articolo C9781461267133
Quantità: Più di 20 disponibili
Da: preigu, Osnabrück, Germania
Taschenbuch. Condizione: Neu. Elliptic Boundary Problems for Dirac Operators | Bernhelm Booß-Bavnbek (u. a.) | Taschenbuch | xviii | Englisch | 2012 | Birkhäuser | EAN 9781461267133 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 106029365
Quantità: 5 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Elliptic boundary problems have enjoyed interest recently, espe cially among C\* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 328 pp. Englisch. Codice articolo 9781461267133
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Elliptic boundary problems have enjoyed interest recently, espe cially among C\* -algebraists and mathematical physicists who want to understand single aspects of the theory, such as the behaviour of Dirac operators and their solution spaces in the case of a non-trivial boundary. However, the theory of elliptic boundary problems by far has not achieved the same status as the theory of elliptic operators on closed (compact, without boundary) manifolds. The latter is nowadays rec ognized by many as a mathematical work of art and a very useful technical tool with applications to a multitude of mathematical con texts. Therefore, the theory of elliptic operators on closed manifolds is well-known not only to a small group of specialists in partial dif ferential equations, but also to a broad range of researchers who have specialized in other mathematical topics. Why is the theory of elliptic boundary problems, compared to that on closed manifolds, still lagging behind in popularity Admittedly, from an analytical point of view, it is a jigsaw puzzle which has more pieces than does the elliptic theory on closed manifolds. But that is not the only reason. Codice articolo 9781461267133
Quantità: 1 disponibili