One of the major concerns of theoretical computer science is the classifi cation of problems in terms of how hard they are. The natural measure of difficulty of a function is the amount of time needed to compute it (as a function of the length of the input). Other resources, such as space, have also been considered. In recursion theory, by contrast, a function is considered to be easy to compute if there exists some algorithm that computes it. We wish to classify functions that are hard, i.e., not computable, in a quantitative way. We cannot use time or space, since the functions are not even computable. We cannot use Turing degree, since this notion is not quantitative. Hence we need a new notion of complexity-much like time or spac~that is quantitative and yet in some way captures the level of difficulty (such as the Turing degree) of a function.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
"Ideal for an advanced undergraduate or beginning graduate student who has some exposure to basic computability theory and wants to see what one can do with it. The questions asked are interesting and can be easily understood and the proofs can be followed without a large amount of training in computability theory."
--Sigact News
A: Getting Your Feet Wet.- 1 Basic Concepts.- 1.1 Notation, Conventions, and Definitions.- 1.2 Basic Recursion Theory.- 1.2.1 Recursive and Recursively Enumerable Sets.- 1.2.2 Reductions.- 1.2.3 Jump and the Arithmetic Hierarchy.- 1.2.4 Simulation and Dovetailing.- 1.3 Useful Concepts from Recursion Theory.- 1.3.1 The Recursion Theorem.- 1.3.2 Initial Segment Arguments.- 1.4 Advanced Concepts We Will Need.- 1.5 Exercises.- 1.6 Bibliographic Notes.- 2 Bounded Queries and the Halting Set.- 2.1 Basic Results About K.- 2.2 Exercises.- 2.3 Bibliographic Notes.- 3 Definitions and Questions.- 3.1 Definitions of Classes.- 3.2 Questions We Address.- 3.3 Enumerability and Bounded Queries.- 3.4 Uniformity.- 3.5 Order Notation.- 3.6 Exercises.- 3.7 Bibliographic Notes.- B: The Complexity of Functions.- 4 The Complexity of CnA.- 4.1 A General Lower Bound.- 4.2 Class Separation: FQ(n,A) ? FQ(n+ 1,A).- 4.3 Verbose Sets.- 4.4 Non-superterse Sets Are Semiverbose.- 4.5 Superterse Sets.- 4.6 Semiverbose Sets.- 4.7 Most Sets Are Superterse.- 4.7.1 The Set of Superterse Sets Has Measure 1.- 4.7.2 The Set of Superterse Sets Is Co-meager.- 4.8 Recursively Enumerable Sets.- 4.8.1 Using Queries to Other Sets.- 4.8.2 Using Queries to A.- 4.8.3 An R.E. Terse Set in Every Nonzero R.E. Degree.- 4.9 Exercises.- 4.10 Bibliographic Notes.- 5 #nA and Other Functions.- 5.1 Trees.- 5.2 Ramsey Theory.- 5.3 Lower Bound on the Complexity of #nA.- 5.4 A General Theorem.- 5.5 Strong Class Separation: EN(2n - 1) ? FQ(n, A).- 5.6 An Alternative Proof.- 5.7 Exercises.- 5.8 Bibliographic Notes.- C: The Complexity of Sets.- 6 The Complexity of ODDnA and MODmnA.- 6.1 ODDnA for Semirecursive Sets A.- 6.2 ODDnA for R.E. Sets A.- 6.2.1 A Proof in the Spirit of Theorem 4.1.1.- 6.2.2 A Proof in the Spirit of Theorem 5.3.2.- 6.2.3 A Very Unusual Proof.- 6.3 The Complexity of MODmnA.- 6.4 ODDnA and MODmnA Can Be Easy.- 6.5 Exercises.- 6.6 Bibliographic Notes.- 7 Q Versus QC.- 7.1 Preliminaries.- 7.2 K Is U.C.- 7.3 Nonzero R.E. Degrees R.E.S.N.U.C.- 7.4 An Intermediate R.E. Set That Is U.C.- 7.5 A Completely R.E.S.N.U.C. Degree.- 7.6 Other U.C. Sets.- 7.7 Truth Table Degrees.- 7.8 Exercises.- 7.9 Bibliographic Notes.- 8 Separating and Collapsing Classes.- 8.1 Sets That Are Both Supportive and Parallel Supportive.- 8.2 Sets That Are Supportive but Not Parallel Supportive.- 8.3 Sets That Are Neither Supportive Nor Parallel Supportive.- 8.4 Exercises.- 8.5 Bibliographic Notes.- D: Miscellaneous.- 9 Nondeterministic Complexity.- 9.1 Nondeterministic Computation.- 9.2 Subjective Sets.- 9.3 Locally Subjective Sets.- 9.3.1 K Is Not Locally Subjective.- 9.3.2 There Exist Locally 1-Subjective Sets.- 9.3.3 Characterizing Locally 1-Subjective Sets.- 9.4 Exercises.- 9.5 Bibliographic Notes.- 10 The Literature on Bounded Queries.- References.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 29,12 per la spedizione da Regno Unito a Italia
Destinazione, tempi e costiEUR 11,00 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -One of the major concerns of theoretical computer science is the classifi cation of problems in terms of how hard they are. The natural measure of difficulty of a function is the amount of time needed to compute it (as a function of the length of the input). Other resources, such as space, have also been considered. In recursion theory, by contrast, a function is considered to be easy to compute if there exists some algorithm that computes it. We wish to classify functions that are hard, i.e., not computable, in a quantitative way. We cannot use time or space, since the functions are not even computable. We cannot use Turing degree, since this notion is not quantitative. Hence we need a new notion of complexity-much like time or spac~that is quantitative and yet in some way captures the level of difficulty (such as the Turing degree) of a function. 372 pp. Englisch. Codice articolo 9781461268482
Quantità: 2 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9781461268482
Quantità: 10 disponibili
Da: moluna, Greven, Germania
Condizione: New. Codice articolo 4189485
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -One of the major concerns of theoretical computer science is the classifi cation of problems in terms of how hard they are. The natural measure of difficulty of a function is the amount of time needed to compute it (as a function of the length of the input). Other resources, such as space, have also been considered. In recursion theory, by contrast, a function is considered to be easy to compute if there exists some algorithm that computes it. We wish to classify functions that are hard, i.e., not computable, in a quantitative way. We cannot use time or space, since the functions are not even computable. We cannot use Turing degree, since this notion is not quantitative. Hence we need a new notion of complexity-much like time or spac~that is quantitative and yet in some way captures the level of difficulty (such as the Turing degree) of a function.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 372 pp. Englisch. Codice articolo 9781461268482
Quantità: 1 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - One of the major concerns of theoretical computer science is the classifi cation of problems in terms of how hard they are. The natural measure of difficulty of a function is the amount of time needed to compute it (as a function of the length of the input). Other resources, such as space, have also been considered. In recursion theory, by contrast, a function is considered to be easy to compute if there exists some algorithm that computes it. We wish to classify functions that are hard, i.e., not computable, in a quantitative way. We cannot use time or space, since the functions are not even computable. We cannot use Turing degree, since this notion is not quantitative. Hence we need a new notion of complexity-much like time or spac~that is quantitative and yet in some way captures the level of difficulty (such as the Turing degree) of a function. Codice articolo 9781461268482
Quantità: 1 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781461268482_new
Quantità: Più di 20 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 552. Codice articolo C9781461268482
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 374. Codice articolo 2697522264
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 374 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 94875015
Quantità: 4 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2716030028322
Quantità: Più di 20 disponibili