An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
0 Review of Optimization in ?d.- Problems.- One Basic Theory.- 1 Standard Optimization Problems.- 1.1. Geodesic Problems.- (a) Geodesics in ?d.- (b) Geodesics on a Sphere.- (c) Other Geodesic Problems.- 1.2. Time-of-Transit Problems.- (a) The Brachistochrone.- (b) Steering and Control Problems.- 1.3. Isoperimetric Problems.- 1.4. Surface Area Problems.- (a) Minimal Surface of Revolution.- (b) Minimal Area Problem.- (c) Plateau’s Problem.- 1.5. Summary: Plan of the Text.- Notation: Uses and Abuses.- Problems.- 2 Linear Spaces and Gâteaux Variations.- 2.1. Real Linear Spaces.- 2.2. Functions from Linear Spaces.- 2.3. Fundamentals of Optimization.- Constraints.- Rotating Fluid Column.- 2.4. The Gâteaux Variations.- Problems.- 3 Minimization of Convex Functions.- 3.1. Convex Functions.- 3.2. Convex Integral Functions.- Free End-Point Problems.- 3.3. [Strongly] Convex Functions.- 3.4. Applications.- (a) Geodesics on a Cylinder.- (b) A Brachistochrone.- (c) A Profile of Minimum Drag.- (d) An Economics Problem.- (e) Minimal Area Problem.- 3.5. Minimization with Convex Constraints.- The Hanging Cable.- Optimal Performance.- 3.6. Summary: Minimizing Procedures.- Problems.- 4 The Lemmas of Lagrange and Du Bois-Reymond.- Problems.- 5 Local Extrema in Normed Linear Spaces.- 5.1. Norms for Linear Spaces.- 5.2. Normed Linear Spaces: Convergence and Compactness.- 5.3. Continuity.- 5.4. (Local) Extremal Points.- 5.5. Necessary Conditions: Admissible Directions.- 5.6*. Affine Approximation: The Fréchet Derivative.- Tangency.- 5.7. Extrema with Constraints: Lagrangian Multipliers.- Problems.- 6 The Euler-Lagrange Equations.- 6.1. The First Equation: Stationary Functions.- 6.2. Special Cases of the First Equation.- (a) When f = f(z).- (b) When f = f(x,z).- (c) When f = f(y,z).- 6.3. The Second Equation.- 6.4. Variable End Point Problems: Natural Boundary Conditions.- Jakob Bernoulli’s Brachistochrone.- Transversal Conditions*.- 6.5. Integral Constraints: Lagrangian Multipliers.- 6.6. Integrals Involving Higher Derivatives.- Buckling of a Column under Compressive Load.- 6.7. Vector Valued Stationary Functions.- The Isoperimetric Problem.- Lagrangian Constraints*.- Geodesics on a Surface.- 6.8*. Invariance of Stationarity.- 6.9. Multidimensional Integrals.- Minimal Area Problem.- Natural Boundary Conditions.- Problems.- Two Advanced Topics.- 7 Piecewise C1 Extremal Functions.- 7.1. Piecewise C1 Functions.- (a) Smoothing.- (b) Norms for ?1.- 7.2. Integral Functions on ?1.- 7.3. Extremals in ?1 [a, b]: The Weierstrass-Erdmann Corner Conditions.- A Sturm-Liouville Problem.- 7.4. Minimization Through Convexity.- Internal Constraints.- 7.5. Piecewise C1 Vector-Valued Extremals.- Minimal Surface of Revolution.- Hilbert’s Differentiability Criterion*.- 7.6*. Conditions Necessary for a Local Minimum.- (a) The Weierstrass Condition.- (b) The Legendre Condition.- Bolza’s Problem.- Problems.- 8 Variational Principles in Mechanics.- 8.1. The Action Integral.- 8.2. Hamilton’s Principle: Generalized Coordinates.- Bernoulli’s Principle of Static Equilibrium.- 8.3. The Total Energy.- Spring-Mass-Pendulum System.- 8.4. The Canonical Equations.- 8.5. Integrals of Motion in Special Cases.- Jacobi’s Principle of Least Action.- Symmetry and Invariance.- 8.6. Parametric Equations of Motion.7*. The Hamilton-Jacobi Equation.- 8.8. Saddle Functions and Convexity; Complementary Inequalities.- The Cycloid Is the Brachistochrone.- Dido’s Problem.- 8.9. Continuous Media.- (a) Taut String.- The Nonuniform String.- (b) Stretched Membrane.- Static Equilibrium of (Nonplanar) Membrane.- Problems.- 9 Sufficient Conditions for a Minimum.- 9.1. The Weierstrass Method.- 9.2. [Strict] Convexity of f(x,Y, Z).- 9.3. Fields.- Exact Fields and the Hamilton-Jacobi Equation*.- 9.4. Hilbert’s Invariant Integral.- The Brachistochrone*.- Variable End-Point Problems.- 9.5. Minimization with Constraints.- The Wirtinger Inequality.- 9.6*. Central Fields.- Smooth Minimal Surface of Revolution.- 9.7. Construction of Central Fields with Given Trajectory: The Jacobi Condition.- 9.8. Sufficient Conditions for a Local Minimum.- (a) Pointwise Results.- Hamilton’s Principle.- (b) Trajectory Results.- 9.9*. Necessity of the Jacobi Condition.- 9.10. Concluding Remarks.- Problems.- Three Optimal Control.- 10 Control Problems and Sufficiency Considerations.- 10.1. Mathematical Formulation and Terminology.- 10.2. Sample Problems.- (a) Some Easy Problems.- (b) A Bolza Problem.- (c) Optimal Time of Transit.- (d) A Rocket Propulsion Problem.- (e) A Resource Allocation Problem.- (f) Excitation of an Oscillator.- (g) Time-Optimal Solution by Steepest Descent.- 10.3. Sufficient Conditions Through Convexity.- Linear State-Quadratic Performance Problem.- 10.4. Separate Convexity and the Minimum Principle.- Problems.- 11 Necessary Conditions for Optimality.- 11.1. Necessity of the Minimum Principle.- (a) Effects of Control Variations.- (b) Autonomous Fixed Interval Problems.- Oscillator Energy Problem.- (c) General Control Problems.- 11.2. Linear Time-Optimal Problems.- Problem Statement.- A Free Space Docking Problem.- 11.3. General Lagrangian Constraints.- (a) Control Sets Described by Lagrangian Inequalities.- (b)* Variational Problems with Lagrangian Constraints.- (c) Extensions.- Problems.- A.1. The Intermediate and Mean Value Theorems.- A.2. The Fundamental Theorem of Calculus.- A.3. Partial Integrals: Leibniz’ Formula.- A.4. An Open Mapping Theorem.- A.5. Families of Solutions to a System of Differential Equations.- A.6. The Rayleigh Ratio.- Historical References.- Answers to Selected Problems.
Book by Troutman John L
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 3,60 per la spedizione in U.S.A.
Destinazione, tempi e costiDa: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2716030028356
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9781461268871
Quantità: 10 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781461268871_new
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping students directly characterize the solutions for many minimization problems, the text serves as a prelude to the field theory for sufficiency, laying as it does the groundwork for further explorations in mathematics, physics, mechanical and electrical engineering, as well as computer science. 484 pp. Englisch. Codice articolo 9781461268871
Quantità: 2 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 702. Codice articolo C9781461268871
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Although the calculus of variations has ancient origins in questions of Ar istotle and Zenodoros, its mathematical principles first emerged in the post calculus investigations of Newton, the Bernoullis, Euler, and Lagrange. Its results now supply fundamental tools of exploration to both mathematicians and those in the applied sciences. (Indeed, the macroscopic statements ob tained through variational principles may provide the only valid mathemati cal formulations of many physical laws. ) Because of its classical origins, variational calculus retains the spirit of natural philosophy common to most mathematical investigations prior to this century. The original applications, including the Bernoulli problem of finding the brachistochrone, require opti mizing (maximizing or minimizing) the mass, force, time, or energy of some physical system under various constraints. The solutions to these problems satisfy related differential equations discovered by Euler and Lagrange, and the variational principles of mechanics (especially that of Hamilton from the last century) show the importance of also considering solutions that just provide stationary behavior for some measure of performance of the system. However, many recent applications do involve optimization, in particular, those concerned with problems in optimal control. Optimal control is the rapidly expanding field developed during the last half-century to analyze optimal behavior of a constrained process that evolves in time according to prescribed laws. Its applications now embrace a variety of new disciplines, including economics and production planning. Codice articolo 9781461268871
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. An introduction to the variational methods used to formulate and solve mathematical and physical problems, allowing the reader an insight into the systematic use of elementary (partial) convexity of differentiable functions in Euclidian space. By helping st. Codice articolo 4189523
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. pp. 484. Codice articolo 2654507255
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand pp. 484 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 55052584
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND pp. 484. Codice articolo 1854507261
Quantità: 4 disponibili