Articoli correlati a Asymptotic Theory of Statistical Inference for Time...

Asymptotic Theory of Statistical Inference for Time Series - Brossura

 
9781461270287: Asymptotic Theory of Statistical Inference for Time Series

Sinossi

The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Recensione

From the reviews:

MATHEMATICAL REVIEWS

"It is valuable both as an advanced graduate level text and as a reference for researchers?he book can be most strongly recommended."

Contenuti

1 Elements of Stochastic Processes.- 1.1 Introduction.- 1.2 Stochastic Processes.- 1.3 Limit Theorems.- Problems.- 2 Local Asymptotic Normality for Stochastic Processes.- 2.1 General Results for Local Asymptotic Normality.- 2.2 Local Asymptotic Normality for Linear Processes.- Problems.- 3 Asymptotic Theory of Estimation and Testing for Stochastic Processes.- 3.1 Asymptotic Theory of Estimation and Testing for Linear Processes.- 3.1.1 Asymptotic Theory Based on a Gaussian Likelihood.- 3.1.2 Asymptotic Theory of Estimation and Testing Based on LAN Results.- 3.2 Asymptotic Theory for Nonlinear Stochastic Models.- 3.2.1 Nonlinear Models.- 3.2.2 Probability Structure of Nonlinear Models.- 3.2.3 Statistical Testing and Estimation Theory for Nonlinear Models.- 3.2.4 Asymptotic Theory Based on the LAN Property.- 3.2.5 Model Selection Problems.- 3.2.6 Nonergodic Models.- 3.3 Asymptotic Theory for Continuous Time Processes.- 3.3.1 Stochastic Integrals and Diffusion Processes.- 3.3.2 Asymptotic Theory for Diffusion Processes.- 3.3.3 Diffusion Processes and Autoregressions with Roots.- Near Unity.- 3.3.4 Continuous Time ARMA Processes.- 3.3.5 Asymptotic Theory for Point Processes.- Problems.- 4 Higher Order Asymptotic Theory for Stochastic Processes.- 4.1 Introduction to Higher Order Asymptotic Theory.- 4.2 Valid Asymptotic Expansions.- 4.3 Higher Order Asymptotic Estimation Theory for Discrete Time Processes in View of Statistical Differential Geometry.- 4.4 Higher Order Asymptotic Theory for Continuous Time Processes.- 4.5 Higher Order Asymptotic Theory for Testing Problems.- 4.6 Higher Order Asymptotic Theory for Normalizing Transformations.- 4.7 Generalization of LeCam’s Third Lemma and Higher Order Asymptotics of Iterative Methods.- Problems.- 5 Asymptotic Theory for Long-Memory Processes.- 5.1 Some Elements of Long-Memory Processes.- 5.2 Limit Theorems for Fundamental Statistics.- 5.3 Estimation and Testing Theory for Long-Memory Processes.- 5.4 Regression Models with Long-Memory Disturbances.- 5.5 Semiparametric Analysis and the LAN Approach.- Problems.- 6 Statistical Analysis Based on Functionals of Spectra.- 6.1 Estimation of Nonlinear Functionals of Spectra.- 6.2 Application to Parameter Estimation for Stationary Processes.- 6.3 Asymptotically Efficient Nonparametric Estimation of Functionals of Spectra in Gaussian Stationary Processes.- 6.4 Robustness in the Frequency Domain Approach.- 6.4.1 Robustness to Small Trends of Linear Functionals of a Periodogram.- 6.4.2 Peak-Insensitive Spectrum Estimation.- 6.5 Numerical Examples.- Problems.- 7 Discriminant Analysis for Stationary Time Series.- 7.1 Basic Formulation.- 7.2 Standard Methods for Gaussian Stationary Processes.- 7.2.1 Time Domain Methods.- 7.2.2 Frequency Domain Methods.- 7.2.3 Admissible Linear Procedure: Case of Unequal Mean Vectors and Covariance Matrices.- 7.3 Discriminant Analysis for Non-Gaussian Linear Processes.- 7.4 Nonparametric Approach for Discriminant Analysis.- 7.5 Parametric Approach for Discriminant Analysis.- 7.6 Derivation of Spectral Expressions to Divergence Measures Between Gaussian Stationary Processes.- 7.7 Miscellany.- Problems.- 8 Large Deviation Theory and Saddlepoint Approximation for Stochastic Processes.- 8.1 Large Deviation Theorem 538 8.2 Asymptotic Efficiency for Gaussian Stationary Processes:Large Deviation Approach.- 8.2.1 Asymptotic Theory of Neyman-Pearson Tests.- 8.2.2 Bahadur Efficiency of Estimator.- 8.2.3 Stochastic Comparison of Tests.- 8.3 Large Deviation Results for an Ornstein-Uhlenbeck Process.- 8.4 Saddlepoint Approximations for Stochastic Processes.- Problems.- A.1 Mathematics.- A.2 Probability.- A.3 Statistics.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9780387950396: Asymptotic Theory of Statistical Inference for Time Series

Edizione in evidenza

ISBN 10:  0387950397 ISBN 13:  9780387950396
Casa editrice: Springer-Verlag GmbH, 2000
Rilegato

Risultati della ricerca per Asymptotic Theory of Statistical Inference for Time...

Immagini fornite dal venditore

Masanobu Taniguchi|Yoshihide Kakizawa
Editore: Springer New York, 2012
ISBN 10: 1461270286 ISBN 13: 9781461270287
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, includi. Codice articolo 4189662

Contatta il venditore

Compra nuovo

EUR 144,94
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Taniguchi, Masanobu; Kakizawa, Yoshihide
Editore: Springer, 2012
ISBN 10: 1461270286 ISBN 13: 9781461270287
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9781461270287_new

Contatta il venditore

Compra nuovo

EUR 159,22
Convertire valuta
Spese di spedizione: EUR 10,36
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Taniguchi, Masanobu; Kakizawa, Yoshihide
Editore: Springer, 2012
ISBN 10: 1461270286 ISBN 13: 9781461270287
Nuovo Brossura

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9781461270287

Contatta il venditore

Compra nuovo

EUR 154,82
Convertire valuta
Spese di spedizione: EUR 25,35
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yoshihide Kakizawa
ISBN 10: 1461270286 ISBN 13: 9781461270287
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -There has been much demand for the statistical analysis of dependent ob servations in many fields, for example, economics, engineering and the nat ural sciences. A model that describes the probability structure of a se ries of dependent observations is called a stochastic process. The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) processes. We deal with a wide variety of stochastic processes, for example, non-Gaussian linear processes, long-memory processes, nonlinear processes, orthogonal increment process es, and continuous time processes. For them we develop not only the usual estimation and testing theory but also many other statistical methods and techniques, such as discriminant analysis, cluster analysis, nonparametric methods, higher order asymptotic theory in view of differential geometry, large deviation principle, and saddlepoint approximation. Because it is d ifficult to use the exact distribution theory, the discussion is based on the asymptotic theory. Optimality of various procedures is often shown by use of local asymptotic normality (LAN), which is due to LeCam. This book is suitable as a professional reference book on statistical anal ysis of stochastic processes or as a textbook for students who specialize in statistics. It will also be useful to researchers, including those in econo metrics, mathematics, and seismology, who utilize statistical methods for stochastic processes. 684 pp. Englisch. Codice articolo 9781461270287

Contatta il venditore

Compra nuovo

EUR 171,19
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yoshihide Kakizawa
ISBN 10: 1461270286 ISBN 13: 9781461270287
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -There has been much demand for the statistical analysis of dependent ob servations in many fields, for example, economics, engineering and the nat ural sciences. A model that describes the probability structure of a se ries of dependent observations is called a stochastic process. The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) processes. We deal with a wide variety of stochastic processes, for example, non-Gaussian linear processes, long-memory processes, nonlinear processes, orthogonal increment process es, and continuous time processes. For them we develop not only the usual estimation and testing theory but also many other statistical methods and techniques, such as discriminant analysis, cluster analysis, nonparametric methods, higher order asymptotic theory in view of differential geometry, large deviation principle, and saddlepoint approximation. Because it is d ifficult to use the exact distribution theory, the discussion is based on the asymptotic theory. Optimality of various procedures is often shown by use of local asymptotic normality (LAN), which is due to LeCam. This book is suitable as a professional reference book on statistical anal ysis of stochastic processes or as a textbook for students who specialize in statistics. It will also be useful to researchers, including those in econo metrics, mathematics, and seismology, who utilize statistical methods for stochastic processes.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 684 pp. Englisch. Codice articolo 9781461270287

Contatta il venditore

Compra nuovo

EUR 171,19
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yoshihide Kakizawa
ISBN 10: 1461270286 ISBN 13: 9781461270287
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - There has been much demand for the statistical analysis of dependent ob servations in many fields, for example, economics, engineering and the nat ural sciences. A model that describes the probability structure of a se ries of dependent observations is called a stochastic process. The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) processes. We deal with a wide variety of stochastic processes, for example, non-Gaussian linear processes, long-memory processes, nonlinear processes, orthogonal increment process es, and continuous time processes. For them we develop not only the usual estimation and testing theory but also many other statistical methods and techniques, such as discriminant analysis, cluster analysis, nonparametric methods, higher order asymptotic theory in view of differential geometry, large deviation principle, and saddlepoint approximation. Because it is d ifficult to use the exact distribution theory, the discussion is based on the asymptotic theory. Optimality of various procedures is often shown by use of local asymptotic normality (LAN), which is due to LeCam. This book is suitable as a professional reference book on statistical anal ysis of stochastic processes or as a textbook for students who specialize in statistics. It will also be useful to researchers, including those in econo metrics, mathematics, and seismology, who utilize statistical methods for stochastic processes. Codice articolo 9781461270287

Contatta il venditore

Compra nuovo

EUR 177,00
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Taniguchi, Masanobu; Kakizawa, Yoshihide
Editore: Springer, 2012
ISBN 10: 1461270286 ISBN 13: 9781461270287
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar2716030028482

Contatta il venditore

Compra nuovo

EUR 164,25
Convertire valuta
Spese di spedizione: EUR 63,42
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Yoshihide Kakizawa Masanobu Taniguchi
Editore: Springer, 2012
ISBN 10: 1461270286 ISBN 13: 9781461270287
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. pp. 684. Codice articolo 2648036646

Contatta il venditore

Compra nuovo

EUR 227,98
Convertire valuta
Spese di spedizione: EUR 7,61
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Kakizawa Yoshihide Taniguchi Masanobu
Editore: Springer, 2012
ISBN 10: 1461270286 ISBN 13: 9781461270287
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand pp. 684 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Codice articolo 44778745

Contatta il venditore

Compra nuovo

EUR 239,00
Convertire valuta
Spese di spedizione: EUR 10,20
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Kakizawa Yoshihide Taniguchi Masanobu
Editore: Springer, 2012
ISBN 10: 1461270286 ISBN 13: 9781461270287
Nuovo Brossura
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND pp. 684. Codice articolo 1848036652

Contatta il venditore

Compra nuovo

EUR 249,42
Convertire valuta
Spese di spedizione: EUR 7,95
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 4 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro