PRELIMINARY TEXT. DO NOT USE. Finsler geometry is a metric generalization of Riemannian geometry and has become a comparatively young branch of differential geometry. Although Finsler geometry has its genesis in Riemann's 1854 "Habilitationsvortrag," its systematic study was not initiated until 1918 by Finsler, and the fundamentals were not completely formulated until the mid-thirties. Later, however, the field underwent a rapid development by mathematicians and physicists of many countries. The main purpose of this book is to study the metric geometry of Finsler manifolds. Portions of the book generalize some standard concepts from Riemannian geometry to the Finsler setting, while other
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
"This book offers the most modern treatment of the topic and will attract both graduate students and a broad community of mathematicians from various related fields."
EMS Newsletter, Issue 41, September 2001
One Finsler Manifolds and Their Curvature.- 1 Finsler Manifolds and the Fundamentals of Minkowski Norms.- 1.0 Physical Motivations.- 1.1 Finsler Structures: Definitions and Conventions.- 1.2 Two Basic Properties of Minkowski Norms.- 1.2 A. Euler’s Theorem.- 1.2 B. A Fundamental Inequality.- 1.2 C. Interpretations of the Fundamental Inequality.- 1.3 Explicit Examples of Finsler Manifolds.- 1.3 A. Minkowski and Locally Minkowski Spaces.- 1.3 B. Riemannian Manifolds.- 1.3 C. Randers Spaces.- 1.3 D. Berwald Spaces.- 1.3 E. Finsler Spaces of Constant Flag Curvature.- 1.4 The Fundamental Tensor and the Cartan Tensor.- * References for Chapter 1.- 2 The Chern Connection.- 2.0 Prologue.- 2.1 The Vector Bundle ?*TM and Related Objects.- 2.2 Coordinate Bases Versus Special Orthonormal Bases.- 2.3 The Nonlinear Connection on the Manifold TM \0.- 2.4 The Chern Connection on ?*TM.- 2.5 Index Gymnastics.- 2.5 A. The Slash (…)s and the Semicolon (…);s.- 2.5 B. Covariant Derivatives of the Fundamental Tensor g.- 2.5 C. Covariant Derivatives of the Distinguished ?.- * References for Chapter 2.- 3 Curvature and Schur’s Lemma.- 3.1 Conventions and the hh-, hv-, vv-curvatures.- 3.2 First Bianchi Identities from Torsion Freeness.- 3.3 Formulas for R and P in Natural Coordinates.- 3.4 First Bianchi Identities from “Almost” g-compatibility.- 3.4 A. Consequences from the $$ dx^k \wedge dx^l $$ Terms.- 3.4 B. Consequences from the $$ dx^k \wedge \frac{1} {F}\delta y^l $$ Terms.- 3.4 C. Consequences from the $$ \frac{1} {F}\delta y^k \wedge \frac{1} {F}\delta y^l $$ Terms.- 3.5 Second Bianchi Identities.- 3.6 Interchange Formulas or Ricci Identities.- 3.7 Lie Brackets among the $$ \frac{\delta } {{\delta x}} $$ and the $$ F\frac{\partial } {{\partial y}} $$.- 3.8 Derivatives of the Geodesic Spray Coefficients Gi.- 3.9 The Flag Curvature.- 3.9 A. Its Definition and Its Predecessor.- 3.9 B. An Interesting Family of Examples of Numata Type.- 3.10 Schur’s Lemma.- *References for Chapter 3.- 4 Finsler Surfaces and a Generalized Gauss—Bonnet Theorem.- 4.0 Prologue.- 4.1 Minkowski Planes and a Useful Basis.- 4.1 A. Rund’s Differential Equation and Its Consequence.- 4.1 B. A Criterion for Checking Strong Convexity.- 4.2 The Equivalence Problem for Minkowski Planes.- 4.3 The Berwald Frame and Our Geometrical Setup on SM.- 4.4 The Chern Connection and the Invariants I, J, K.- 4.5 The Riemannian Arc Length of the Indicatrix.- 4.6 A Gauss-Bonnet Theorem for Landsberg Surfaces.- *References for Chapter 4.- Two Calculus of Variations and Comparison Theorems.- 5 Variations of Arc Length, Jacobi Fields, the Effect of Curvature.- 5.1 The First Variation of Arc Length.- 5.2 The Second Variation of Arc Length.- 5.3 Geodesics and the Exponential Map.- 5.4 Jacobi Fields.- 5.5 How the Flag Curvature’s Sign Influences Geodesic Rays.- *References for Chapter 5.- 6 The Gauss Lemma and the Hopf-Rinow Theorem.- 6.1 The Gauss Lemma.- 6.1 A. The Gauss Lemma Proper.- 6.1 B. An Alternative Form of the Lemma.- 6.1 C. Is the Exponential Map Ever a Local Isometry?.- 6.2 Finsler Manifolds and Metric Spaces.- 6.2 A. A Useful Technical Lemma.- 6.2 B. Forward Metric Balls and Metric Spheres.- 6.2 C. The Manifold Topology Versus the Metric Topology.- 6.2 D. Forward Cauchy Sequences, Forward Completeness.- 6.3 Short Geodesics Are Minimizing.- 6.4 The Smoothness of Distance Functions.- 6.4 A. On Minkowski Spaces.- 6.4 B. On Finsler Manifolds.- 6.5 Long Minimizing Geodesies.- 6.6 The Hopf-Rinow Theorem.- *References for Chapter 6.- 7 The Index Form and the Bonnet-Myers Theorem.- 7.1 Conjugate Points.- 7.2 The Index Form.- 7.3 What Happens in the Absence of Conjugate Points?.- 7.3 A. Geodesies Are Shortest Among “Nearby” Curves.- 7.3 B. A Basic Index Lemma.- 7.4 What Happens If Conjugate Points Are Present?.- 7.5 The Cut Point Versus the First Conjugate Point.- 7.6 Ricci Curvatures.- 7.6 A. The Ricci Scalar Ric and the Ricci Tensor Ricij.- 7.6 B. The Interplay between Ric and RiCij.- 7.7 The Bonnet-Myers Theorem.- *References for Chapter 7.- 8 The Cut and Conjugate Loci, and Synge’s Theorem.- 8.1 Definitions.- 8.2 The Cut Point and the First Conjugate Point.- 8.3 Some Consequences of the Inverse Function Theorem.- 8.4 The Manner in Which cy and iy Depend on y.- 8.5 Generic Properties of the Cut Locus Cutx.- 8.6 Additional Properties of Cutx When M Is Compact.- 8.7 Shortest Geodesics within Homotopy Classes.- 8.8 Synge’s Theorem.- *References for Chapter 8.- 9 The Cartan-Hadamard Theorem and Rauch’s First Theorem.- 9.1 Estimating the Growth of Jacobi Fields.- 9.2 When Do Local Diffeomorphisms Become Covering Maps?.- 9.3 Some Consequences of the Covering Homotopy Theorem.- 9.4 The Cartan-Hadamard Theorem.- 9.5 Prelude to Rauch’s Theorem.- 9.5 A. Transplanting Vector Fields.- 9.5 B. A Second Basic Property of the Index Form.- 9.5 C. Flag Curvature Versus Conjugate Points.- 9.6 Rauch’s First Comparison Theorem.- 9.7 Jacobi Fields on Space Forms.- 9.8 Applications of Rauch’s Theorem.- *References for Chapter 9.- Three Special Finsler Spaces over the Reals.- 10 Berwald Spaces and Szabó’s Theorem for Berwald Surfaces.- 10.0 Prologue.- 10.1 Berwald Spaces.- 10.2 Various Characterizations of Berwald Spaces.- 10.3 Examples of Berwald Spaces.- 10.4 A Fact about Flat Linear Connections.- 10.5 Characterizing Locally Minkowski Spaces by Curvature.- 10.6 Szabó’s Rigidity Theorem for Berwald Surfaces.- 10.6 A. The Theorem and Its Proof.- 10.6 B. Distinguishing between y-local and y-global.- *References for Chapter 10.- 11 Randers Spaces and an Elegant Theorem.- 11.0 The Importance of Randers Spaces.- 11.1 Randers Spaces, Positivity, and Strong Convexity.- 11.2 A Matrix Result and Its Consequences.- 11.3 The Geodesic Spray Coefficients of a Randers Metric.- 11.4 The Nonlinear Connection for Randers Spaces.- 11.5 A Useful and Elegant Theorem.- 11.6 The Construction of y-global Berwald Spaces.- 11.6 A. The Algorithm.- 11.6 B. An Explicit Example in Three Dimensions.- *References for Chapter 11 309.- 12 Constant Flag Curvature Spaces and Akbar-Zadeh’s Theorem.- 12.0 Prologue.- 12.1 Characterizations of Constant Flag Curvature.- 12.2 Useful Interpretations of ? and Ë.- 12.3 Growth Rates of Solutions of Ë + ? E = 0.- 12.4 Akbar-Zadeh’s Rigidity Theorem.- 12.5 Formulas for Machine Computations of K.- 12.5 A. The Geodesic Spray Coefficients.- 12.5 B. The Predecessor of the Flag Curvature.- 12.5 C. Maple Codes for the Gaussian Curvature.- 12.6 A Poincaré Disc That Is Only Forward Complete.- 12.6 A. The Example and Its Yasuda-Shimada Pedigree.- 12.6 B. The Finsler Function and Its Gaussian Curvature.- 12.6 C. Geodesics; Forward and Backward Metric Discs.- 12.6 D. Consistency with Akbar-Zadeh’s Rigidity Theorem.- 12.7 Non-Riemannian Projectively Flat S2 with K = 1.- 12.7 A. Bryant’s 2-parameter Family of Finsler Structures.- 12.7 B. A Specific Finsler Metric from That Family.- *References for Chapter 12 350.- 13 Riemannian Manifolds and Two of Hopf’s Theorems.- 13.1 The Levi-Civita (Christoffel) Connection.- 13.2 Curvature.- 13.2 A. Symmetries, Bianchi Identities, the Ricci Identity.- 13.2 B. Sectional Curvature.- 13.2 C. Ricci Curvature and Einstein Metrics.- 13.3Warped Products and Riemannian Space Forms.- 13.3 A. One Special Class of Warped Products.- 13.3 B. Spheres and Spaces of Constant Curvature.- 13.3 C. Standard Models of Riemannian Space Forms.- 13.4 Hopf’s Classification of Riemannian Space Forms.- 13.5 The Divergence Lemma and Hopf’s Theorem.- 13.6 The Weitzenböck Formula and the Bochner Technique.- *References for Chapter 13.- 14 Minkowski Spaces, the Theorems of Deicke and Brickell.- 14.1 Generalities and Examples.- 14.2 The Riemannian Curvature of Each Minkowski Space.- 14.3 The Riemannian Laplacian in Spherical Coordinates.- 14.4 Deicke’s Theorem.- 14.5 The Extrinsic Curvature of the Level Spheres of F.- 14.6 The Gauss Equations.- 14.7 The Blaschke-Santaló Inequality.- 14.8 The Legendre Transformation.- 14.9 A Mixed-Volume Inequality, and Brickell’s Theorem.- * References for Chapter 14.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 16,94 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 9,70 per la spedizione da Germania a Italia
Destinazione, tempi e costiDa: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book focuses on the elementary but essential problems in Riemann-Finsler Geometry, which include a repertoire of rigidity and comparison theorems, and an array of explicit examples, illustrating many phenomena which admit only Finslerian interpretat. Codice articolo 4189701
Quantità: Più di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on the elementary but essential problems in Riemann-Finsler Geometry, which include a repertoire of rigidity and comparison theorems, and an array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. 'This book offers the most modern treatment of the topic .' EMS Newsletter. 460 pp. Englisch. Codice articolo 9781461270706
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riemann-Finsler geometry (or Finsler geometry for short), one is in principle equipped with only a family of Minkowski norms. So ardsticks are assigned but protractors are not. With such a limited tool kit, it is natural to wonder just how much geometry one can uncover and describe It now appears that there is a reasonable answer. Finsler geometry encompasses a solid repertoire of rigidity and comparison theorems, most of them founded upon a fruitful analogue of the sectional curvature. There is also a bewildering array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. This book focuses on the elementary but essential items among these results. Much thought has gone into making the account a teachable one.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 460 pp. Englisch. Codice articolo 9781461270706
Quantità: 2 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781461270706_new
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riemann-Finsler geometry (or Finsler geometry for short), one is in principle equipped with only a family of Minkowski norms. So ardsticks are assigned but protractors are not. With such a limited tool kit, it is natural to wonder just how much geometry one can uncover and describe It now appears that there is a reasonable answer. Finsler geometry encompasses a solid repertoire of rigidity and comparison theorems, most of them founded upon a fruitful analogue of the sectional curvature. There is also a bewildering array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. This book focuses on the elementary but essential items among these results. Much thought has gone into making the account a teachable one. Codice articolo 9781461270706
Quantità: 1 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 19199782-n
Quantità: Più di 20 disponibili
Da: Rarewaves.com UK, London, Regno Unito
Paperback. Condizione: New. In Riemannian geometry, measurements are made with both yardsticks and protractors. These tools are represented by a family of inner-products. In Riemann-Finsler geometry (or Finsler geometry for short), one is in principle equipped with only a family of Minkowski norms. So ardsticks are assigned but protractors are not. With such a limited tool kit, it is natural to wonder just how much geometry one can uncover and describe?It now appears that there is a reasonable answer. Finsler geometry encompasses a solid repertoire of rigidity and comparison theorems, most of them founded upon a fruitful analogue of the sectional curvature. There is also a bewildering array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. This book focuses on the elementary but essential items among these results. Much thought has gone into making the account a teachable one. Softcover reprint of the original 1st ed. 2000. Codice articolo LU-9781461270706
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9781461270706
Quantità: 10 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 19199782
Quantità: 15 disponibili
Da: THE SAINT BOOKSTORE, Southport, Regno Unito
Paperback / softback. Condizione: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 688. Codice articolo C9781461270706
Quantità: Più di 20 disponibili